
IB Physics SL - Study Guide

Science Skills

List the seven fundamental base units and their abbreviations:

	Unit	Abbreviation
Length	Meter	m
Mass	Kilogram	kg
Time	Second	S
Electric Current	Ampere	А
Temperature	Kelvin	К
Amount of Substance	Mole	mol
Luminous Intensity	Candela	cd

Metric Prefixes – List the unit prefixes in their appropriate decimal position

Dimensional Analysis

Convert the following:

20 mi hr⁻¹ \rightarrow m s⁻¹

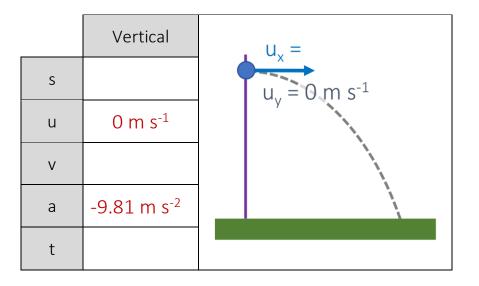
$$\frac{20 \text{ mi}}{1 \text{ hr}} \times \frac{1609 \text{ m}}{1 \text{ mi}} \times \frac{1 \text{ hr}}{60 \text{ min}} \times \frac{1 \text{ min}}{60 \text{ s}} = 8.9 \frac{\text{m}}{\text{s}} = 8.9 \text{ m s}^{-1}$$

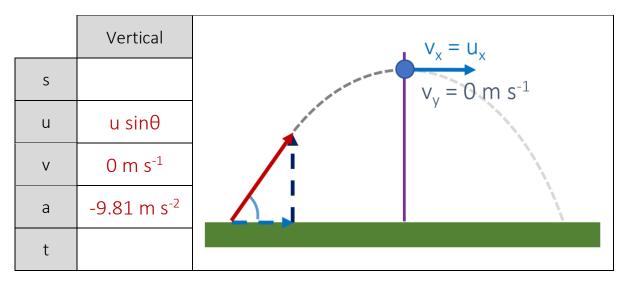
 $0.0007 \text{ km}^2 \rightarrow \text{m}^2$

$$0.0007 \ km^2 \times \frac{1000 \ m}{1 \ km} \times \frac{1000 \ m}{1 \ km} = 700 \ m^2 \quad \text{or} \qquad 0.0007 \ km^2 \times \left(\frac{1000 \ m}{1 \ km}\right)^2 = 700 \ m^2$$

Determine the units for Q:

$Q = mc \Delta T$	m (mass)	kg
$Q = (kg)(J kg^{-1} K^{-1})(K) = \frac{(kg)(J)(K)}{kg^{-1}} = J$	c (specific heat)	J kg ⁻¹ K ⁻¹
kg K	ΔT (change in temp)	К


Motion


	Scalar	Vector
How far (m)	Distance	Displacement
How fast (m s ⁻¹)	Speed	Velocity

	Displacement vs Time	Velocity vs Time	Acceleration vs Time
Meaning of the Graph	Slope: Velocity	Slope: Acceleration Area under the Curve: Displacement	Area under the Curve: Velocity
Constant Displacement			
Constant Positive Velocity			
Constant Negative Velocity			
Constant Positive Acceleration (speeding up)			
Constant Negative Acceleration (slowing down)			

	Variable Symbol	Unit	Kinematic Equations	s	u	v	а	t
Displacement	S	m	v = u + at		•	~	~	<
Initial Velocity	u	m s⁻¹	$s = ut + \frac{1}{2}at^2$	~	~		~	<
Final Velocity	V	m s⁻¹	$v^2 = u^2 + 2as$	~	~	~	~	
Acceleration	а	m s⁻²	$s = \frac{(v+u)t}{2}$	-	~	~		<
Time	t	S						

Horizontal Component	$A_H = A\cos\theta$	A
Vertical Component	$A_V = A\sin\theta$	θ

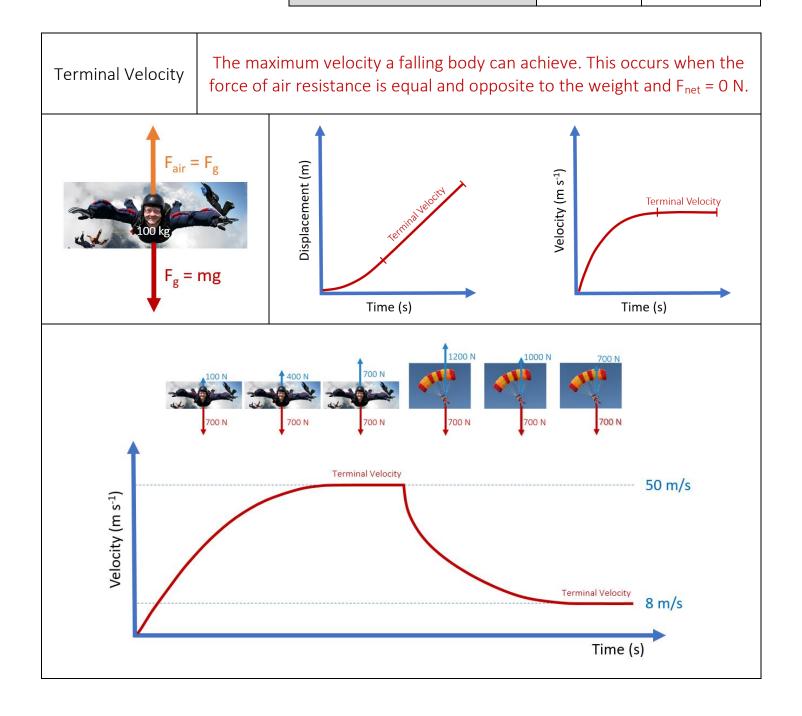
Forces

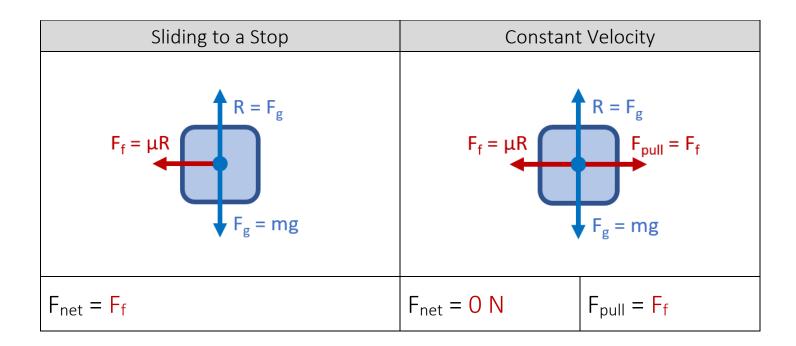
Type of Force	Variable	Description/Important Properties	Equation
Weight	Fg	Force of gravity on an object with mass	F _g = mg
Tension	Fτ	Always pulls in the same direction as the rope or chain providing the tension	
Normal Reaction	R	Always perpendicular to a surface	
Friction	F _f	Always opposes the motion of an object	$F_f = \mu R$
Air Resistance	F _{air}	Increases with surface area and velocity	

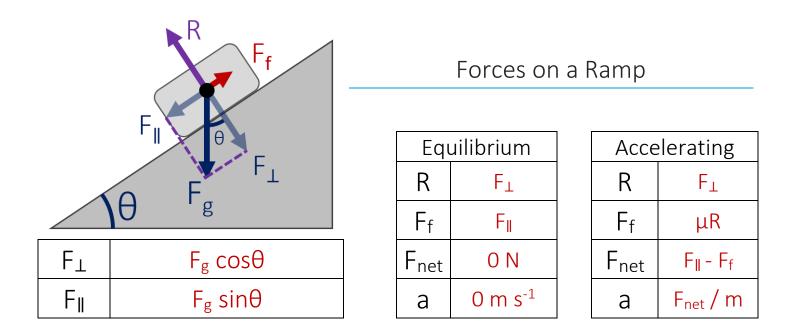
If an object has a net force of zero its motion is either:

Not moving (velocity = 0 m s^{-1})

or

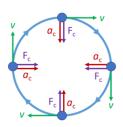

Moving at a constant velocity


Newton's Laws


Newton's First Law	A object at rest remains at rest and an object in motion remains in motion until and unless an external force acts upon it (Unbalanced force).
Newton's Second Law	The rate of change of momentum of an object is proportional to the resultant force acting on the body and is in the same direction. (F = ma)
Newton's Third Law	All forces occur in pairs. Every action has an equal and opposite reaction

Data Booklet	Variable Symbol	Unit	
Equations:	Equations: Force		Ν
F = ma	Mass	m	kg
$F_f \leq \mu_s R$	$\leq \mu_s R$ Acceleration		m s⁻¹
$F_f \le \mu_s R$ $F_f = \mu_d R$	R Normal Reaction Force		Ν
	Coefficient of Kinetic Friction	μ _d	
	Coefficient of Static Friction	μ_{s}	

Т



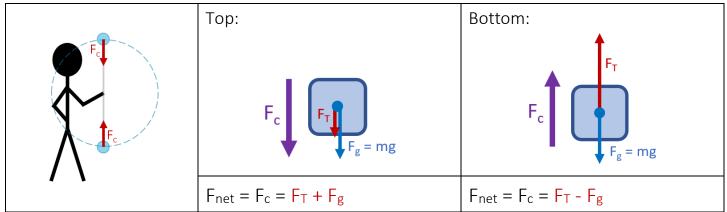
Circular Motion

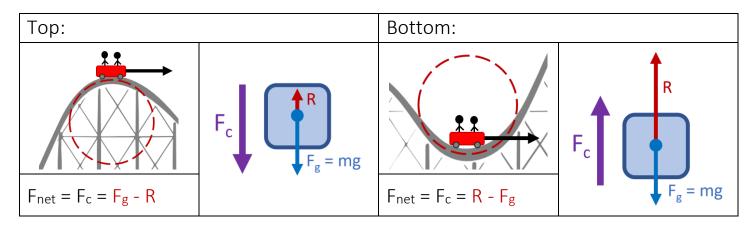
	Variable Symbol	Unit
Distance	d	m
Angular Distance	θ	rad
Angular Velocity	ω	rad s ⁻¹
Linear Velocity	V	m s⁻¹
Centripetal Acceleration	а	m s ⁻²
Centripetal Force	F _c	N

Draw in vectors for v, a_c , and $F_c \rightarrow$

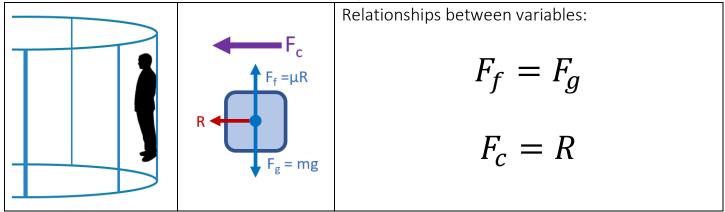
Data Booklet Equations:

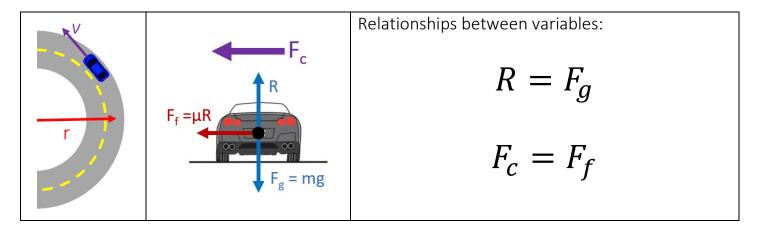
$$v = \omega r$$

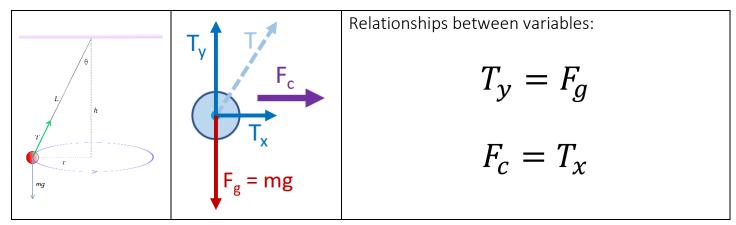

$$a = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$$


$$F = \frac{mv^2}{r} = m\omega^2 r$$

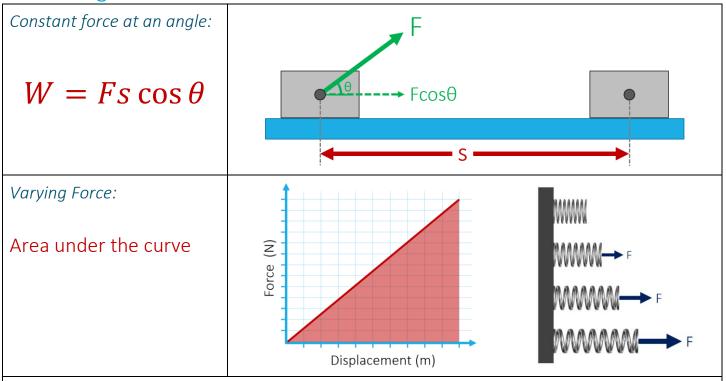
Defining Circular Motion


	Period	Т	S	Angular Velocity	ω	rad s ⁻¹
2π rad	Time per r	evolu	ition	ω =	$\frac{2\pi}{T}$	


Vertical Circular Motion



Circular Motion with Friction and Angles


Energy

	Variable Symbol	Unit
Work	W	Joules [J]
Power	Р	Watts [W]
Kinetic Energy	E _k	J
Elastic Potential Energy	Ep	J
Gravitational Potential Energy	ΔE _p	J
Spring Constant	k	N m ⁻¹
Spring Stretch	Δx	m

$$W = Fs \cos\theta$$
$$E_k = \frac{1}{2}mv^2$$
$$E_p = \frac{1}{2}k\Delta x^2$$
$$\Delta E_p = mg\Delta h$$

power =
$$Fv$$

Calculating Work

Examples of no work being done for an object in motion:

• Pushing something that doesn't move (no displacement, no work)

- Waiter carrying a tray horizontally (force is vertical, motion is horizontal)
- Orbiting object (velocity is tangent to path, force is toward the center)

Calculating Power

In terms of work and time:

$$Power = \frac{Work}{Time}$$

In terms of force and velocity:

$$Power = Force \times Velocity = Fv$$

Units

	Standard Unit	From Equation	Fundamental SI Units		
Work	J	N m	kg m ² s ⁻²		
Power	W	J s⁻¹	kg m ² s ⁻³		

Types of Energy

Kinetic Energy	Elastic Potential Energy	Gravitational Potential Energy
$\frac{1}{2}mv^2$	$\frac{1}{2}k\Delta x^2$	$mg\Delta h$

Conservation of Energy

Total Energy Before = Total Energy After

Work-Energy Theorem

Work \rightarrow Energy $Fs = \frac{1}{2}mv^2$ Energy \rightarrow Work $\frac{1}{2}mv^2 = Fs$

Momentum

	Variable Symbol	Unit
Momentum	р	kg m s⁻¹
Mass	m	kg
Velocity	V	m s⁻¹
Time	t	S
Kinetic Energy	Εĸ	J
Impulse	Impulse	N s or kg m s ⁻¹

Data Booklet Equations:

$$p = mv$$
$$F = \frac{\Delta p}{\Delta t}$$
$$E_K = \frac{p^2}{2m}$$

Impulse = $F\Delta t = \Delta p$

Conservation of Energy Problems

	"Explosion" p _{AB} = p _A + p _B
Before 6	"Hit and Bounce" $p_A + p_B = p_A + p_B$
Before Before	"Hit and Stick" $p_A + p_B = p_{AB}$

Types of Collisions

Elastic	Kinetic Energy is conserved (perfect hit and bounce) *Typically just found in particle collisions	
Inelastic	Kinetic Energy is not conserved	

Constant force: 🧭 8.9 s Force × Time 5000 N F∆t Varying Force: 13 12 11 Area under a 10 Force (N) Force vs Time 7 Graph 5 6 7 8 Time (s) 1 2 3 4 9 10

Calculating Impulse

Impulse-Momentum Equation

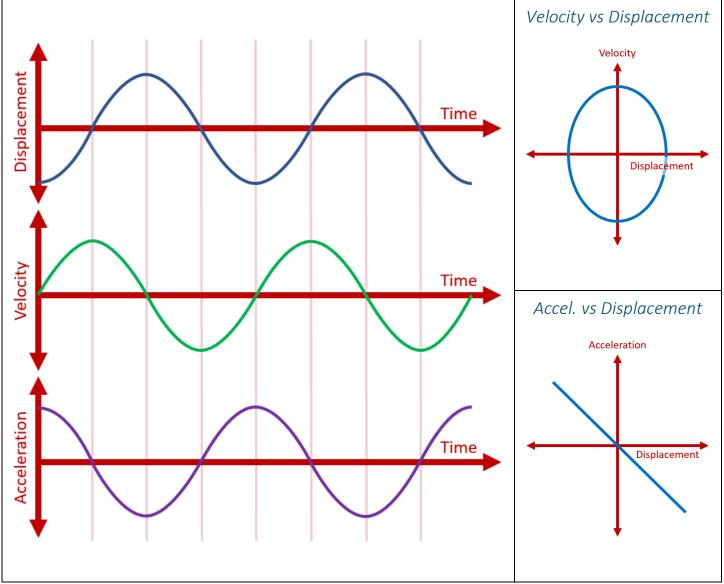
$F\Delta t = \Delta p = m\Delta v = mv - mu$

Collision Safety

Explain (using impulse, force, and time) how to decrease the force acting on an object undergoing a collision:

Impulse is the same overall regardless of the impact style because the object has a set mass and impact velocity. The force can be decreased by increasing the time of the impact.

Impulse = $F_{\Delta t}$ or Impulse = $F \Delta t$


Waves – Sound

	Variable Symbol	Unit
Period	Т	S
Frequency	f	Hz
Wavelength	λ	m
Amplitude	А	m
Wave Speed	V	m s⁻¹

Data Booklet Equations:

$$T = \frac{1}{f}$$
$$c = f\lambda$$

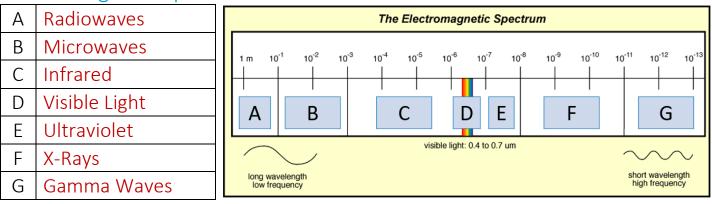
Simple Harmonic Motion Graphs

Types of Waves	Picture	Definition	Examples
Transverse		Particles move perpendicular to the motion of the wave	LightRipples in a PondEarthquakes
Longitudinal		Particles move parallel to the motion of the wave	SoundEarthquakes

Parts of a Wave

Label the Wave: • Amplitude • Wavelength • Crest	
• Trough	

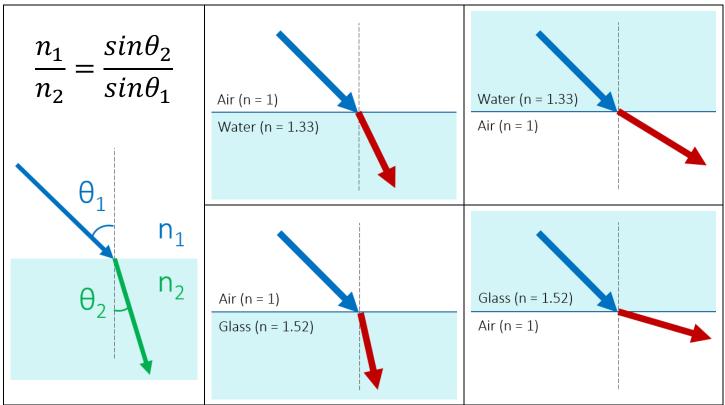
Harmonics


	Open Pipe		Closed Pipe		String	
End Conditions	Antinode	Antinode	Node	Antinode	Node	Node
3 rd Harmonic						
	$L = \frac{3}{2}\lambda$		$L = \frac{5}{4}\lambda$		$L = \frac{3}{2}\lambda$	
2 nd Harmonic						
	L =	1λ	L =	$=\frac{3}{4}\lambda$	L =	1λ
1 st Harmonic						
(Fundamental)	L =	$\frac{1}{2}\lambda$	L =	$=\frac{1}{4}\lambda$	L =	$\frac{1}{2}\lambda$

Interference

Constructive	Path Difference = $n \lambda$	Destructive	Path Difference = $(n + \frac{1}{2})\lambda$

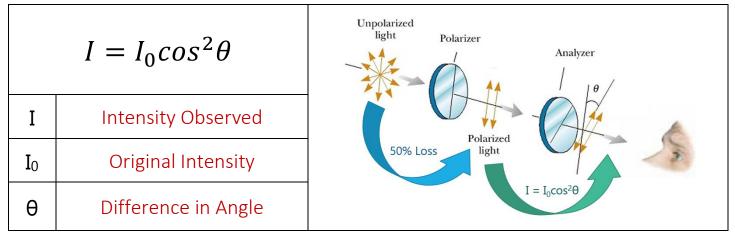
Waves – Light


Electromagnetic Spectrum

Index of Refraction

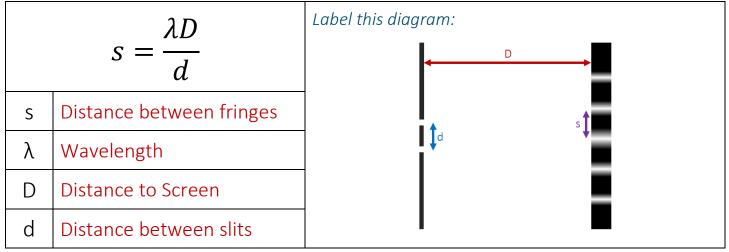
Medium	Wave Speed (v)	Index of Refraction (n)	
Vacuum	3.00 × 10 ⁸ m s ⁻¹	1.0000	$n_1 v_2$
Air	2.999 × 10 ⁸ m s ⁻¹	1.0003	$\frac{1}{2} = \frac{1}{12}$
Water	2.256 × 10 ⁸ m s ⁻¹	1.33	$n_2 v_1$
Glass	1.974 × 10 ⁸ m s ⁻¹	1.52	


Refraction


Critical Angle

When
$$\theta_1 = \theta_c$$

 $\theta_2 = 90^{\circ}$
 $\theta_c = sin^{-1} \left(\frac{n_2}{n_1}\right)$
Air
Water
 θ_c


Reflection

Polarized Light

Double Slit Experiment

Electricity

Charge

Symbol	q	Unit	Coulombs [C]
Charge of 1 Electron			1.6 × 10 ⁻¹⁹ C
# of Electrons per Coulomb			6.25 × 10 ¹⁸ e ⁻

Drift Speed

	Variable Symbol	Unit
Current	Ι	А
# of Electrons per m ³	n	
Cross Sectional Area	А	M ²
Drift Speed	V	m s⁻¹
Charge	q	С

Current

Symbol	Ι	Unit	Amperes [A]
Unit in ter	ms of Cc	oulombs	$A = \frac{C}{s}$

Data Booklet Equation:

I = nAvq

Cross Sectional Area:

$$A = \pi r^2$$


Electrical Properties

Property	What is it?		Unit
Voltage	Potential Difference	V	Volts [V]
Current	The rate at which charges move through a wire		Amperes [A]
Resistance	How hard it is for a current to flow through a conductor	R	Ohms [Ω]

Kirchhoff's Laws

$\Sigma I = 0$ (junction)		$\Sigma V =$	0 (loop))		
			The sum of the voltages (po must equal the voltages dis				
		Across resistors		Always	s Negative		
Entering Junction	\rightarrow	•	Positive	Negative to Positive	\rightarrow	╶╢╴	Positive
Exiting Junction	•	\rightarrow	Negative	Positive to Negative	\rightarrow	- -	Negative

Ohm's Law

Equivalent Resistance

	Drawing with R_1 and R_2	Equation
Series	R ₁ R ₂	$R_{total} = R_1 + R_2 + \cdots$
Parallel	R ₁	$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$

Measuring Circuits

	Ammeter	Voltmeter
Ideal Resistance	R = 0 Ω	$R = \infty \Omega$
How is it connected to the component being measured?	Ammeters must be connected in series	Voltmeters must be connected in parallel
Drawing of meter measuring R_1	$\begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$	

Resistivity

	Variable Symbol	Unit
Resistivity	ρ	Ωm
Resistance	R	Ω
Cross Sectional Area	А	m ²
Length	L	m

Data Booklet Equation:

$$\rho = \frac{RA}{L}$$

Cross Sectional Area:

 $A = \pi r^2$

Power

In terms of V and I	In terms of I and R	In terms of V and R
$\mathbf{P} = \mathbf{V} \times \mathbf{I}$	$\mathbf{P} = \mathbf{I}^2 \mathbf{R}$	$P = \frac{V^2}{R}$

Voltage Dividers

	Light-Dependent Resistor		Thermistor	
Symbol				
Relationship	Light	Increases	Heat	Increases
Relationship	Resistance Decreases		Resistance	Decreases
Circuit	Switch turns on in the	e dark:	Switch turns on in a fi	re:

Batteries

Primary Cells	Secondary Cells
Cannot be recharged	Can be recharged by passing a current through the battery in the opposite direction as it would normally travel

	Variable Symbol	Unit
Electromotive Force (e.m.f)	3	V
Current	Ι	А
Circuit Resistance	R	Ω
Internal Resistance	r	Ω

Data Booklet Equation:

$$\varepsilon = I(R + r)$$

Force Fields

Forces between objects

Coulomb's Law

	Variable Symbol	Unit
Electrostatic Force	F	Ν
Object 1 Charge	q 1	С
Object 2 Charge	q 2	С
Separation Distance	r	М
Coulomb Constant	k	N m ² C ⁻²
Permittivity of Free Space	E 0	$C^2 N^{-1} m^{-2}$

Universal Law of Gravitation

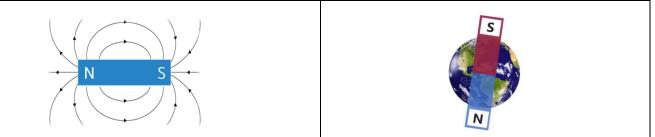
	Variable Symbol	Unit
Gravitational Force	F	Ν
Object 1 Mass	М	kg
Object 2 Mass	m	kg
Separation Distance	r	m
Gravitational Constant	G	N m ² kg ⁻²

Data Booklet Equations:

$$F = k \frac{q_1 q_2}{r^2}$$
$$= \frac{1}{4\pi\varepsilon_0}$$

k = 8.99 × 10⁹ N m² C⁻²
$$\epsilon_0$$
 = 8.85 × 10⁻¹² C² N⁻¹ m⁻²

Data Booklet Equation:


$$F = G \frac{Mm}{r^2}$$

 $G = 6.67 \text{ N m}^2 \text{ kg}^{-2}$

Force Fields

	Electri	c Field		Gravitati	onal Field
Symbol	E	Data Booklet Equation:	Symbol	g	Data Booklet Equation:
Units	F C ⁻¹	$E = \frac{F}{q}$	Units	F kg⁻¹	$g = \frac{F}{m}$ $g = G \frac{M}{r^2}$

Magnetic Fields

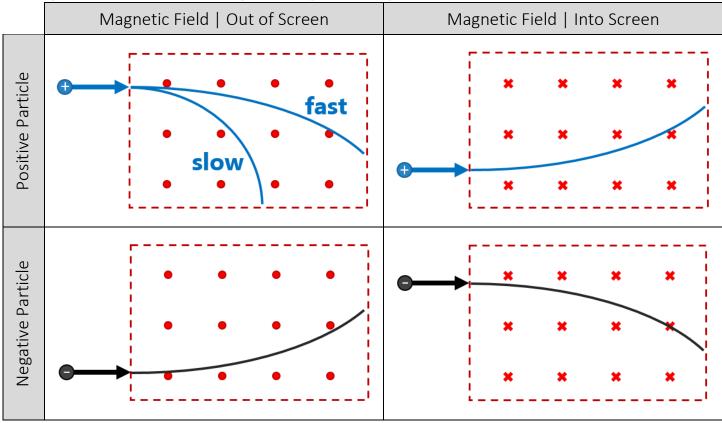
Right Hand Rule:

Right Hand Rule #1		Right Hand Rule #2		Right Hand Rule #3			
Magi	netic field around a cu carrying wire	rrent	Pole orientation for a coil of wire (electromagnet, solenoid, etc.)		6		gnetic force direction e or moving particle
Thumb	Current		Thumb North Pole		Thumb	Current	
Fingers	Magnetic Fi	eld	Fingers		Current	Fingers	Magnetic Field
• 🔺 #	*** 7 7		s ////////	// N	N //////// S	Palm	Force
• • *			T	1	f f	s	S N
\checkmark	·····))	* :	N ////////	// s	s ////////////////////////////////////	T	

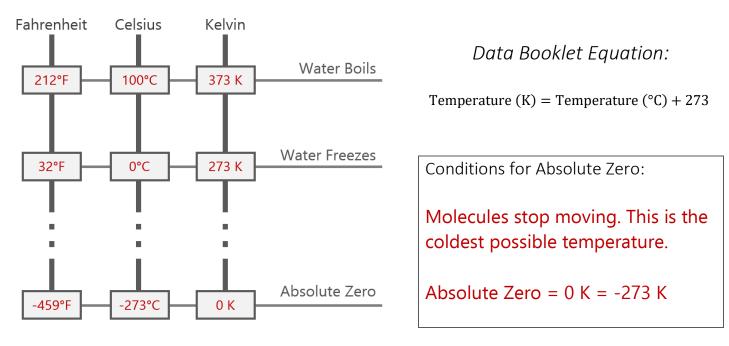
Electromagnetic Force

0	-	
	Variable Symbol	Unit
Magnetic Force	F	Ν
Magnetic Field Strength	В	Т
Current	Ι	А
Wire Length	L	m
Angle to Field	θ	0
Particle Charge	q	С
Particle Velocity	V	m s ⁻¹

Data Booklet Equations:


Wire:

$$F = BIL \sin \theta$$


Particle:

$$F = qvB\sin\theta$$

Charged Particles Moving through a Magnetic Field

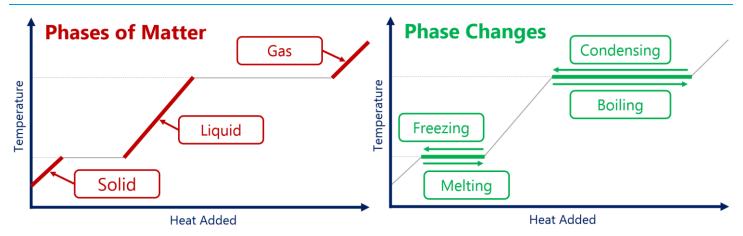
Thermal Physics

Specific Heat Capacity and Specific Latent Heat

	Variable Symbol	Unit
Heat Energy	Q	J
Mass	m	kg
Specific Heat Capacity	С	J kg ⁻¹ K ⁻¹
Change in Temperature	ΔΤ	K
Specific Latent Heat	L	J kg⁻¹

Kinetic Energy \rightarrow Temperature

Data Booklet Equations:


 $Q = mc\Delta T$

$$Q = mL$$

E_Ρ Potential Energy \rightarrow Phase Change

Heating Curves

Eκ

Pressure

	Variable Symbol	Unit	
Force	F	Ν	
Area	А	m ³	
Pressure	р	N m⁻³	Ра

Data Booklet Equation:

$$p = \frac{F}{A}$$

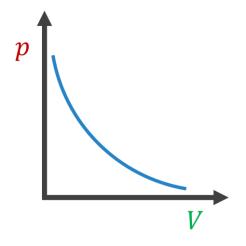
Kinetic Theory and Temperature

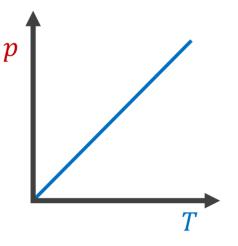
	Variable Symbol	Unit
Average Kinetic Energy	$\overline{E}_{\mathbf{k}}$	J
Absolute Temperature	Т	К
Boltzmann's Constant	k _b	J K ⁻¹

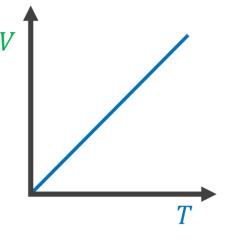
Data Booklet Equation:

$$\overline{E}_K = \frac{3}{2}k_BT = \frac{3}{2}\frac{R}{N_A}T$$

$$k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

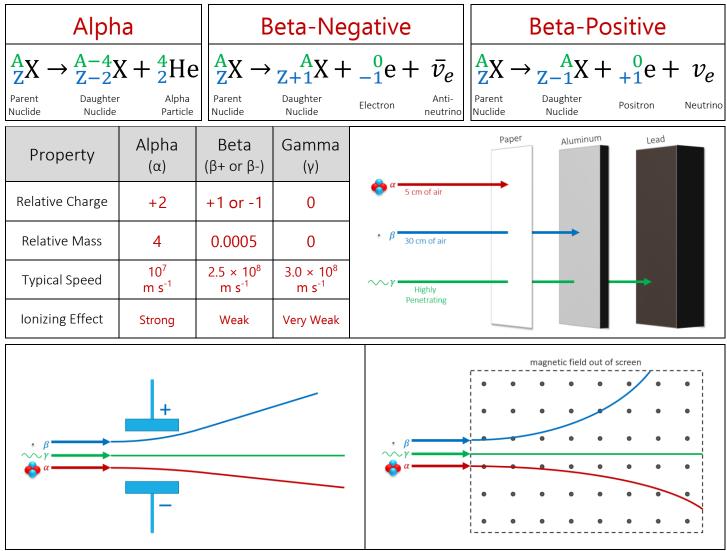

Avogadro's Number N _A	6.02×10^{23}
----------------------------------	-----------------------


Ideal Gas Law


	Variable Symbol	Unit
Pressure	р	Ра
Volume	V	m ⁻³
Number of Molecules	n	mol
Gas Constant	R	J K ⁻¹ mol ⁻¹
Temperature	Т	К

Data Booklet Equations: $pV = nRT \mid R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ Conditions for Ideal Gases:

Ideal Gas Relationships



Atomic Physics

Types of Decay

Half Life

# of Half-Lives	Fraction Remaining	Percentage Remaining	8000 Kemaining %08
0	1	100%	
1	1/2	50%	00% 60%
2	1/4	25%	40%
3	1/8	12.5%	το 30%
4	1/16	6.25%	20%
5	1/32	3.125%	0%
6	1/64	1.5625%	0 1 2 3 4 5 6 # of Half-Lives

Mass-Energy Equivalence

	Variable Symbol	Unit
Energy	E	J
Mass	m	kg
Speed of Light	С	m s⁻¹

Data Booklet Equation:

$$E = mc^2$$

$$c = 3.00 \times 10^8 \, m \, s^{-1}$$

Unified Atomic Mass Unit	и	1.661 × 10 ⁻²⁷ kg	1.000000 u	931.5 MeV c ⁻²
Electron Rest Mass	m _e	9.110 × 10 ⁻³¹ kg	0.000549 u	0.511 MeV c ⁻²
Proton Rest Mass	$m_{ m p}$	1.673 × 10 ⁻²⁷ kg	1.007276 u	938 MeV c ⁻²
Neutron Rest Mass	m _n	1.675 × 10 ⁻²⁷ kg	1.008665 u	940 MeV c ⁻²

Converting between Joules and Electron-Volts

 $\{Energy in eV\} = \frac{\{Energy in J\}}{1.60 \times 10^{-19}}$

 $\{Energy in J\} = \{Energy in eV\} \times 1.60 \times 10^{-19}$

Process for Calculating Binding Energy

- 1. Add up the "before and after" masses
- 2. Find the mass defect by taking the difference
- 3. Convert atomic mass units (u) into MeV c^{-2} by using the conversion factor 1 u = 931.5 MeV c^{-2}
- 4. The c^{-2} cancels out when converting to energy using $E = mc^2$ so this is your binding energy

	Describe	Examples	Challenges
Fission	Lighter elements are created by splitting heavier elements	Nuclear Power Nuclear Weapons	Proper amounts of fissionable elements required to maintain chain reaction
Fusion	Heavier elements are created by combining lighter elements	The Sun/Stars	Requires high heat and high pressure

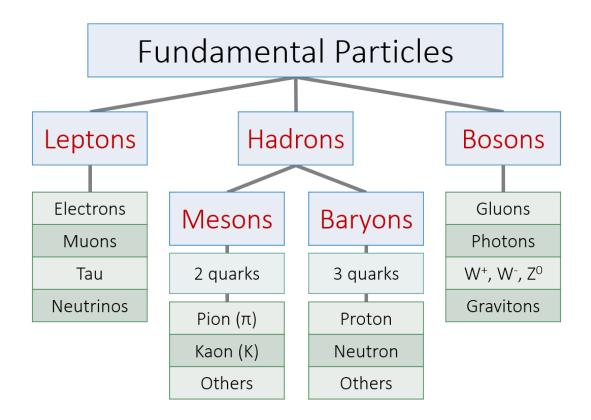
Fundamental Particles

The following two tables are provided in the IB Physics Data Booklet

Charge	Quarks			Baryon Number
$\frac{2}{3}$	u c t			$\frac{1}{3}$
$-\frac{1}{3}$	d	$\frac{1}{3}$		
All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of –1				

Quarks				
Symbol	Name Charge Baryon		Baryon #	
u	Up	$+\frac{2}{3}$	$\frac{1}{3}$	
d	Down	$-\frac{1}{3}$	$\frac{1}{3}$	
С	Charm	$+\frac{2}{3}$	$\frac{1}{3}$	
S	Strange	$-\frac{1}{3}$	$\frac{1}{3}$	
t	Тор	$+\frac{2}{3}$	$\frac{1}{3}$	
b	Bottom	$-\frac{1}{3}$	$\frac{1}{3}$	

Anti-Quarks				
Symbol	Name	Charge	Baryon #	
ū	Antiup	$-\frac{2}{3}$	$-\frac{1}{3}$	
ā	Antidown	$+\frac{1}{3}$	$-\frac{1}{3}$	
Ē	Anticharm	$-\frac{2}{3}$	$-\frac{1}{3}$	
Ī	Antistrange	$+\frac{1}{3}$	$-\frac{1}{3}$	
ī	Antitop	$-\frac{2}{3}$	$-\frac{1}{3}$	
b	Antibottom	$+\frac{1}{3}$	$-\frac{1}{3}$	

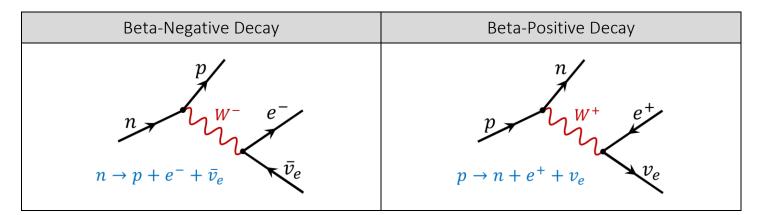

Charge	Leptons			
-1	e μ τ			
0	v_e v_μ v_τ			
All leptons have a lepton number of 1 and antileptons have a lepton number of –1				

Leptons				
Symbol	Name Charge Lepton		Lepton #	
е	Electron	-1	1	
μ	Muon	-1	1	
τ	Tau	-1	1	
v _e	Electron Neutrino	0	1	
v_{μ}	Muon Neutrino	0	1	
$v_{ au}$	Tau Neutrino	0	1	

Anti-Leptons				
Symbol	Name	Charge	Lepton #	
ē	Antielectron (positron)	+1	-1	
μ	Antimuon	+1	-1	
τ	Antitau	+1	-1	
\bar{v}_e	Electron Antineutrino	0	-1	
$ar{v}_{\mu}$	Muon Antineutrino	0	-1	
$ar{v}_{ au}$	Tau Antineutrino	0	-1	

Explain the phenomenon of **Quark Confinement**:

Quarks have never been observed on their own. The amount of energy required to overcome the strong nuclear force holding the quarks together gets converted into mass and forms a new quark pair.


Fundamental Forces

	Strength	Distance
Gravitational	Weakest	Long Range
Weak	Weak	Short Range
Electromagnetic	Strong	Very Long Range
Strong	Strongest	Very Short Range

Particle Configurations

Proton		Neutron	
d u u		d c	1
Total Charge	+1	Total Charge	0

Feynman Diagrams

Energy Production

Global Energy Usage

Rank	Energy Source	%
1	Oil	32%
2	Coal	28%
3	Natural Gas	22%
4	Biomass	10%
5	Nuclear	5%
6	Hydropower	2.5%

Efficiency

$Efficiency = \frac{useful \ work \ out}{total \ work \ in} = \frac{useful \ power \ out}{total \ power \ in}$	Energy
Sankey Diagram Rules:	Energy Out
Width of the arrow proportional to the amount of energy	In Energy Lost

Energy Density

	Definition	Units
Specific Energy	Energy transferred per unit mass	J kg⁻¹
Energy Density	Energy transferred per unit volume	J m ⁻³

Primary and Secondary Sources

Primary Energy Sources	Secondary Energy Sources		
Energy sources found in the natural environment (fossil fuels, solar, wind, nuclear, hydro, etc.)	Useful transformations of the primary sources (electricity, pumped storage for hydro, etc.)		

Fossil Fuels

Number of years left in global reserves		Describe the process of Fracking :
Coal	~100-150 years	1. Drill hole into shale rock
Oil	~50 years	 Inject fracking fluid at high pressure to create cracks Extract newly released natural gas
Natural Gas	~50 years	 Seal fracking fluid in the hole

Nuclear Power

	% of U-235	Why is the concentration of U-235 important?
Uranium Ore	0.7%	Only U-235 can undergo a fission chain reaction
Fuel-Grade	3.5%	What is done with the nuclear waste?
Weapons-Grade	90%	Stored on-site in spent fuel pools and/or concrete dry cask storage

Moderator	Control Rods
Slows down neutrons to be absorbed by U-235	Absorbs neutrons to limit number of chain reactions
Made from Water or Graphite (carbon)	Made from Boron

Renewable Energy

	Variable Symbol	Unit	Data Booklet Equation
Power	Р	W	1
Cross-Sectional Area	А	m ²	Power = $\frac{1}{2}A\rho v^3$
Air Density	ρ	kg m⁻³	A2
Air Speed	V	m s⁻¹	$\mathbf{A} = \pi r^2$

Photovoltaic Cells	Solar Concentrator	Solar Heating Panel	
Converts solar energy directly into	Mirrors focus sunlight onto a central	Sun's radiation is absorbed by black	
electricity. Useful in solar panels on	tower. The high thermal energy is	pipes that transfer thermal energy	
top of building or solar farms	converted to steam and runs	to the water flowing through them.	
connected to the energy grid	turbines to produce electricity	Replaces hot water heater.	

	Biomass	Coal	Geothermal	Hydropower	Natural Gas	Nuclear	Petroleum	Solar	Wind
Renewable	\checkmark		\checkmark	\checkmark				<	\checkmark
Produces CO ₂	\checkmark	\checkmark			\checkmark		\checkmark		

Thermal Energy Transfer

Conduction	Convection	Radiation	
Energy is transferred through molecular collisions	Energy circulates through the expansion and rising of hot fluids	Energy is transferred through electromagnetic radiation. Can travel through a vacuum	

	Emissivity	Black Body Radiation	Visible
Sun	~1	An idealized object that	7000K 6000K 5000K
Earth	~0.6	absorbs all the electromagnetic radiation	900K 3000K
Black-Body	1	the falls on it	500 1000 1500 2000 nm Wavelength λ (nm)

Power Emissivity	Variable Symbol	Unit
Power	Р	W
Emissivity	е	
Surface Area	А	m ²
Temperature	Т	К
Max Wavelength	λ_{max}	m

Data Booklet Equations:

$$P = e\sigma AT^4$$
$$\lambda_{max} = \frac{2.90 \times 10^{-3}}{T}$$
$$\sigma = 5.67 \times 10^{-8} \,\mathrm{W \,m^{-2} \,K^{-4}}$$

Solar Radiation and Climate Change

Intensity	Variable Symbol	Unit
Intensity	Ι	W m ⁻²
Power	Р	W
Area	А	m ²

l	Data Booklet Equations:
	$I = \frac{\text{power}}{A}$

$$A_{sphere} = 4\pi r^2$$

Greenhouse Gases	Positive Feedback Loop		Negative Feedback Loop
Water Vapor (H ₂ O)		Melting ice (decreases albedo)	Cloud formation (increases albedo)
Carbon Dioxide (CO ₂)		Melting permafrost (releases methane)	Increased photosynthesis (uses CO ₂)
Methane (CH ₄)		Rising ocean temp releases methane	Climate Change leads to renewables

Astrophysics

The Scale of Astrophysics

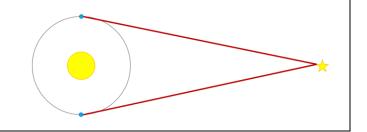
Unit Conversion	Definition
1 light year (ly) = <mark>9.46 × 10¹⁵ m</mark>	The distance the light travels in an earth year
1 parsec (pc) = <mark>3.26 ly</mark>	The average distance between the earth and the sun
1 astronomical unit (AU) = 1.50×10^{11} m	The distance at which the mean radius of the earth's orbit subtends an angle of 1 arc second

Stellar Quantities

Brightness	Luminosity
Star intensity to an observer on earth	How much total power a star emits
Units: W m ⁻²	Units: W

	Variable Symbol	Unit
Distance	d	рс
Parallax Angle	р	sec
Brightness	b	W m⁻²
Luminosity	L	W
Max Wavelength	λ_{max}	m
Temperature	Т	К
Surface Area	А	m ²

Describe the process of Stellar Parallax: Observe how far a star moves relative to distant stars six months apart so that earth has its maximum displacement and an angle can be measured

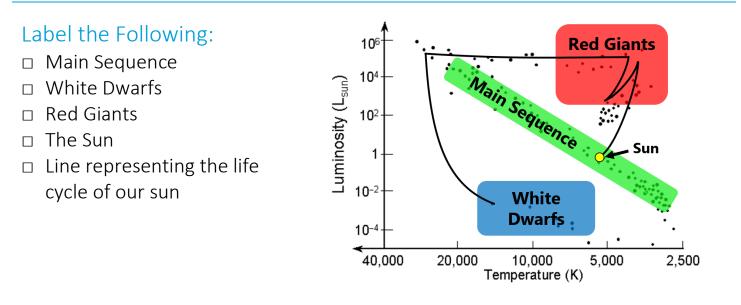

$$d \text{ (parsec)} = \frac{1}{p \text{ (arc - second)}}$$

$$b = \frac{L}{4\pi d^2}$$

 $\lambda_{\max}T = 2.9 \times 10^{-3} \text{ m K}$ $I = \sigma A T^4$

$$L = \sigma A T^4$$

$$\sigma = 5.67 \times 10^{-8} \mathrm{W} \mathrm{m}^{-2} \mathrm{K}^{-4}$$


Atomic Spectra

	Variable Symbol	Unit	Data Booklet Equations:
Energy	E	J or eV	E = hf
Planck's Constant	h	Js	, hc
Frequency	f	Hz	$\lambda = \frac{hc}{E}$
Speed of Light	С	m s⁻¹	$h = 6.63 \times 10^{-34} \text{ J s}$
Wavelength	λ	m	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
			-

<i>hc</i> 1.99×10^{-25} J m	
--------------------------------------	--

 $1.24 \times 10^{-6} \text{ eV m}$

H-R Diagrams and Life Cycle of a Star

Chandrasekhar Lin	nit	Opper	nheimer-Volkhoff Limit
The maximum mass of a core that can become a white dwarf is 1.4 times the mass of the sun (1.4 M ₀)		The maximum mass of a core that can become a neutron star is 3 times the mass of the sun (3 M_{\odot})	
Sun Like Stars (< 1.5 M₀) Huge Stars ((1.5 – 3 M₀)	Giant Stars (> 3 M₀) ↓
White Dwarf	Neutro	on Star	Black Hole

The Expanding Universe

Standard Candles	Evidence for Expanding Universe
Objects of known luminosity that can be used with the apparent brightness to measure distance from earth	Hubble discovered that the farther away stars and galaxies are, the more their light is redshifted.
Cephid Variables and Type Ia Supernovas	This means, more distant objects are traveling faster than nearer objects.

	Variable Symbol	Unit
Redshift	Z	
Change in Wavelength	Δλ	m
Original Wavelength	λ_0	m
Relative Velocity of Source	V	m s⁻¹
Speed of Light	С	m s⁻¹
Current Scale Factor	R	
Scale Factor when Emitted	R ₀	
Hubble's Constant	H ₀	km s ⁻¹ Mpc ⁻¹

Data Booklet Equations:

$$z = \frac{\Delta \lambda}{\lambda_0} \approx \frac{v}{c}$$

$$z = \frac{R}{R_0} - 1$$

$$v = H_0 d$$

$$c = 3.00 \times 10^8 \text{ m s}^{-1}$$

 $H_0 \approx 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$

The Big Bang

	Peak Wavelength	Temperature
Cosmic Microwave Background Radiation	~0.001 m (1 mm)	~2.9 <i>K</i>

Describe why the CMB is evidence of the Big Bang:

The CMB is the heat signature from the early universe. As the universe has expanded to its current size, the wavelength stretched out to the current value seen in the CMB. This radiation is fairly uniform and it can be observed in every direction.