IB Physics SL - Study Guide

Science Skills

List the seven fundamental base units and their abbreviations:

	Unit	Abbreviation
Length	Meter	m
Mass	Kilogram	kg
Time	Second	s
Electric Current	Ampere	A
Temperature	Kelvin	K
Amount of Substance	Mole	mol
Luminous Intensity	Candela	cd

Metric Prefixes - List the unit prefixes in their appropriate decimal position

Dimensional Analysis
Convert the following:
$20 \mathrm{mi} \mathrm{hr}^{-1} \rightarrow \mathrm{~m} \mathrm{~s}^{-1}$

$$
\frac{20 \mathrm{mi}}{1 \mathrm{hr}} \times \frac{1609 \mathrm{~m}}{1 \mathrm{mi}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=8.9 \frac{\mathrm{~m}}{\mathrm{~s}}=8.9 \mathrm{~m} \mathrm{~s}^{-1}
$$

$0.0007 \mathrm{~km}^{2} \rightarrow \mathrm{~m}^{2}$

$$
0.0007 \mathrm{~km}^{2} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=700 \mathrm{~m}^{2} \quad \text { or } \quad 0.0007 \mathrm{~km}^{2} \times\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}=700 \mathrm{~m}^{2}
$$

Determine the units for Q :

$$
Q=(k g)\left(J k g^{-1} K^{-1}\right)(K)=\frac{(k g)(J)(K)}{k g K}=J
$$

m (mass)	kg
c (specific heat)	$\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$
ΔT (change in temp)	K

	Scalar	Vector
How far (m)	Distance	Displacement
How fast $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	Speed	Velocity

	Displacement vs Time	Velocity vs Time	Acceleration vs Time
Meaning of the Graph	Slope: \quad Velocity	Slope: Acceleration Area under the Curve: Displacement	Area under the Curve: Velocity
Constant Displacement	$\xrightarrow{\square}$		
Constant Positive Velocity		$\xrightarrow{\square}$	
Constant Negative Velocity			
Constant Positive Acceleration (speeding up)			$\xrightarrow{\square}$
Constant Negative Acceleration (slowing down)			

	Variable Symbol	Unit
Displacement	s	m
Initial Velocity	u	$\mathrm{m} \mathrm{s}^{-1}$
Final Velocity	V	$\mathrm{m} \mathrm{s}^{-1}$
Acceleration	a	$\mathrm{m} \mathrm{s}^{-2}$
Time	t	s

Kinematic Equations	S	u	V	a	t
$v=u+a t$		\checkmark	\checkmark	\checkmark	\checkmark
$s=u t+\frac{1}{2} a t^{2}$	\checkmark	\checkmark		\checkmark	\checkmark
$v^{2}=u^{2}+2 a s$	\checkmark	\checkmark	\checkmark	\checkmark	
$S=\frac{(v+u) t}{2}$	\checkmark	\checkmark	\checkmark		\checkmark

Horizontal Component	$A_{H}=A \cos \theta$	
Vertical Component	$A_{V}=A \sin \theta$	

	Vertical
s	
u	$0 \mathrm{~m} \mathrm{~s}^{-1}$
v	
a	$-9.81 \mathrm{~m} \mathrm{~s}^{-2}$
t	

Forces

Type of Force	Variable	Description/Important Properties	Equation
Weight	F_{g}	Force of gravity on an object with mass	$\mathrm{F}_{\mathrm{g}}=\mathrm{mg}$
Tension	F_{T}	Always pulls in the same direction as the rope or chain providing the tension	
Normal Reaction	R	Always perpendicular to a surface	
Friction	F_{f}	Always opposes the motion of an object	$\mathrm{F}_{\mathrm{f}}=\mu \mathrm{R}$
Air Resistance	$\mathrm{F}_{\text {air }}$	Increases with surface area and velocity	

If an object has a net force of zero its motion is either:
Not moving (velocity $=0 \mathrm{~m} \mathrm{~s}^{-1}$)
or
Moving at a constant velocity

Newton's Laws

Newton's First Law	A object at rest remains at rest and an object in motion remains in motion until and unless an external force acts upon it (Unbalanced force).
Newton's Second Law	The rate of change of momentum of an object is proportional to the resultant force acting on the body and is in the same direction. ($F=\mathrm{ma}$)
Newton's Third Law	All forces occur in pairs. Every action has an equal and opposite reaction

	Variable Symbol	Unit
Force	F	N
Mass	m	kg
Acceleration	a	$\mathrm{m} \mathrm{s}^{-1}$
Normal Reaction Force	R	N
Coefficient of Kinetic Friction	μ_{d}	--
Coefficient of Static Friction	μ_{s}	--

Sliding to a Stop	Constant Velocity
$F_{\text {net }}=F_{f}$	$F_{\text {net }}=0 \mathrm{~N} \quad \mathrm{~F}_{\text {pull }}=\mathrm{F}_{\mathrm{f}}$

Forces on a Ramp

Equilibrium		
R	F_{\perp}	
F_{f}	$F_{\\| l}$	
$F_{\text {net }}$	0 N	
a	$0 \mathrm{~m} \mathrm{~s}^{-1}$	

Accelerating	
R	F_{\perp}
F_{f}	μR
$F_{\text {net }}$	$F_{I I}-F_{f}$
a	$F_{\text {net }} / m$

Circular Motion

	Variable Symbol	Unit
Distance	d	m
Angular Distance	θ	rad
Angular Velocity	ω	$\mathrm{rad} \mathrm{s}^{-1}$
Linear Velocity	V	$\mathrm{m} \mathrm{s}^{-1}$
Centripetal Acceleration	a	$\mathrm{~m} \mathrm{~s}^{-2}$
Centripetal Force	F_{c}	N

Draw in vectors for v, a_{c}, and $F_{c} \rightarrow$

Data Booklet Equations:
$v=\omega r$
$a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}$
$F=\frac{m v^{2}}{r}=m \omega^{2} r$

Defining Circular Motion

	Period	T	S	Angular Velocity	ω	$\mathrm{rad} \mathrm{s}^{-1}$
	Time per revolution			$\omega=\frac{2 \pi}{T}$		

Vertical Circular Motion

	Bottom:	
	$F_{\text {net }}=F_{c}=F_{T}+F_{g}$	Top:

Top: \quad Bottom:

Circular Motion with Friction and Angles

| | | Relationships between variables: |
| :--- | :--- | :--- | :--- |
| | | $F_{f}=F_{g}$ |

Relationships between variables:

$$
\begin{aligned}
T_{y} & =F_{g} \\
F_{c} & =T_{x}
\end{aligned}
$$

Energy

	Variable Symbol	Unit
Work	W	Joules [J]
Power	P	Watts [W]
Kinetic Energy	E_{k}	J
Elastic Potential Energy	E_{p}	J
Gravitational Potential Energy	$\Delta \mathrm{E}_{\mathrm{p}}$	J
Spring Constant	k	$\mathrm{N} \mathrm{m}^{-1}$
Spring Stretch	Δx	m

Data Booklet Equations:

$$
\begin{gathered}
W=F s \cos \theta \\
E_{k}=\frac{1}{2} m v^{2} \\
E_{p}=\frac{1}{2} k \Delta x^{2} \\
\Delta E_{p}=m g \Delta h \\
\text { power }=F v
\end{gathered}
$$

Calculating Work

Constant force at an angle: $W=F s \cos \theta$	
Varying Force: Area under the curve	
Examples of no work being done for an object in motion: - Pushing something that doesn't move (no displacement, no work) - Waiter carrying a tray horizontally (force is vertical, motion is horizontal) - Orbiting object (velocity is tangent to path, force is toward the center)	

Calculating Power

In terms of work and time:	In terms of force and velocity:
Power $=\frac{\text { Work }}{\text { Time }}$	Power $=$ Force \times Velocity $=F v$

Units

	Standard Unit	From Equation	Fundamental SI Units
Work	J	N m	$\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
Power	W	$\mathrm{J} \mathrm{s}^{-1}$	$\mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-3}$

Types of Energy

Kinetic Energy	Elastic Potential Energy	Gravitational Potential Energy
$\frac{1}{2} m v^{2}$	$\frac{1}{2} k \Delta x^{2}$	$m g \Delta h$

Conservation of Energy

Total Energy Before = Total Energy After

Work-Energy Theorem

Work \rightarrow Energy

$$
F s=\frac{1}{2} m v^{2}
$$

Energy \rightarrow Work
$\frac{1}{2} m v^{2}=F s$

	Variable Symbol	Unit
Momentum	p	$\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$
Mass	m	kg
Velocity	V	$\mathrm{m} \mathrm{s}^{-1}$
Time	t	s
Kinetic Energy	E_{K}	J
Impulse	Impulse	${\mathrm{Ns} \mathrm{or} \mathrm{kg} \mathrm{m} \mathrm{s}^{-1}}$

Data Booklet Equations:

$$
\begin{aligned}
p & =m v \\
F & =\frac{\Delta p}{\Delta t} \\
E_{K} & =\frac{p^{2}}{2 m}
\end{aligned}
$$

Impulse $=F \Delta t=\Delta p$

Conservation of Energy Problems

"Explosion"

Types of Collisions

Elastic	Kinetic Energy is conserved (perfect hit and bounce) *Typically just found in particle collisions
Inelastic	Kinetic Energy is not conserved

Calculating Impulse

Constant force: Force \times Time F $\Delta \mathrm{t}$	
Varying Force: Area under a Force vs Time Graph	

Impulse-Momentum Equation

$$
F \Delta t=\Delta p=m \Delta v=m v-m u
$$

Collision Safety

Explain (using impulse, force, and time) how to decrease the force acting on an object undergoing a collision:
Impulse is the same overall regardless of the impact style because the object has a set mass and impact velocity. The force can be decreased by increasing the time of the impact.

$$
\text { Impulse }=\mathrm{F}_{\Delta \mathrm{t}} \quad \text { or } \quad \text { Impulse }={ }_{F} \Delta \mathrm{t}
$$

Waves - Sound

	Variable Symbol	Unit
Period	T	s
Frequency	f	Hz
Wavelength	λ	m
Amplitude	A	m
Wave Speed	v	$\mathrm{~m} \mathrm{~s}^{-1}$

Data Booklet Equations:

$$
\begin{aligned}
T & =\frac{1}{f} \\
c & =f \lambda
\end{aligned}
$$

Simple Harmonic Motion Graphs

Types of Waves	Picture	Definition	Examples
Transverse	NVVA	Particles move perpendicular to the motion of the wave	- Light - Ripples in a Pond - Earthquakes
Longitudinal	IT	Particles move parallel to the motion of the wave	- Sound - Earthquakes

Parts of a Wave

Label the Wave:

- Amplitude
- Wavelength
- Crest
- Trough

Harmonics

	Open Pipe		Closed Pipe		String	
End Conditions	Antinode	Antinode	Node	Antinode	Node	Node
$3^{\text {dra }}$ Harmonic					2	
				$\frac{5}{4} \lambda$		
$2^{\text {nd }}$ Harmonic						
		1λ		${ }_{4}{ }^{2}$		
$1^{\text {st }}$ Harmonic (Fundamental)						
				$\frac{1}{4} \lambda$		

Interference

Constructive	Path Difference $=n \lambda$	Destructive	Path Difference $=(n+1 / 2) \lambda$

Waves - Light

Electromagnetic Spectrum

A	Radiowaves
B	Microwaves
C	Infrared
D	Visible Light
E	Ultraviolet
F	X-Rays
G	Gamma Waves

Index of Refraction

Medium	Wave Speed (v)	Index of Refraction (n)	\boldsymbol{n}_{1}
Vacuum	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	1.0000	
Air	$2.999 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	1.0003	
Water	$2.256 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	1.33	
Glass	$1.974 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	1.52	

Refraction

$\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}$		

Critical Angle

| When $\theta_{1}=\theta_{c}$ |
| :--- | :--- | :--- |
| $\theta_{2}=90^{\circ}$ |$\quad \theta_{c}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right) \quad \stackrel{\text { Water }}{\square}$

Reflection

| Law of Reflection | |
| :---: | :---: | :---: |
| Angle of Incidence $=$ Angle of Reflection | |

Polarized Light

$I=I_{0} \cos ^{2} \theta$		
I	Intensity Observed	
I0	Original Intensity	
θ	Difference in Angle	

Double Slit Experiment

Electricity

Charge

Symbol	q Unit	Coulombs [C]	
Charge of 1 Electron			$1.6 \times 10^{-19} \mathrm{C}$
\# of Electrons per Coulomb	$6.25 \times 10^{18} \mathrm{e}^{-}$		

Current

Symbol	I	Unit	Amperes [A]
Unit in terms of Coulombs	$\mathrm{A}=\frac{\mathrm{C}}{\mathrm{S}}$		

Drift Speed

	Variable Symbol	Unit
Current	I	A
\# of Electrons per m^{3}	n	---
Cross Sectional Area	A	M^{2}
Drift Speed	v	$\mathrm{m} \mathrm{s}^{-1}$
Charge	q	C
Cross Sectional Area:		
A $=\pi r^{2}$		

Electrical Properties

Property	What is it?	Symbol	Unit
Voltage	Potential Difference	V	Volts [V]
Current	The rate at which charges move through a wire	I	Amperes [A]
Resistance	How hard it is for a current to flow through a conductor	R	Ohms [Ω]

Kirchhoff's Laws

$\Sigma \mathrm{I}=0$ (junction)				$\Sigma \mathrm{V}=0$ (loop)			
The total current coming into a junction must equal the total current leaving the same junction				The sum of the voltages (potential differences) provided must equal the voltages dissipated across components			
				Across resistors		Alway	egative
Entering Junction	\rightarrow	\bullet	Positive	Negative to Positive	\rightarrow	+	Positive
Exiting Junction	-	\rightarrow	Negative	Positive to Negative	\rightarrow	-ト	Negative

$\frac{V}{I \times R}$	$\begin{aligned} & V=I \times R \\ & \hline I=\frac{V}{R} \\ & R=\frac{V}{I} \end{aligned}$	Ohmic Resistor	$\xrightarrow[\text { Potential Difference/V }]{\text { Non-Ohmic Resistor }}$

Equivalent Resistance

	Drawing with R_{1} and R_{2}	Equation
Series	\rightarrow	$R_{\text {total }}=R_{1}+R_{2}+\cdots$
Parallel	\longrightarrow	$\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots$

Measuring Circuits

	Ammeter	Voltmeter
Ideal Resistance	$\mathrm{R}=0 \Omega$	$\mathrm{R}=\infty \Omega$
How is it connected to the component being measured?	Ammeters must be connected in series	Voltmeters must be connected in parallel
Drawing of meter measuring R_{1}		

Resistivity

	Variable Symbol	Unit
Resistivity	ρ	$\Omega \mathrm{m}$
Resistance	R	Ω
Cross Sectional Area	A	m^{2}
Length	L	m

Data Booklet Equation:

$$
\rho=\frac{\mathrm{RA}}{\mathrm{~L}}
$$

Cross Sectional Area:
$\mathrm{A}=\pi \mathrm{r}^{2}$

Power

In terms of V and I	In terms of I and R	In terms of V and R
$P=V \times I$	$P=I^{2} R$	$P=\frac{V^{2}}{R}$

Voltage Dividers

	Light-Dependent Resistor	Thermistor
Symbol		
Relationship	Light Increases	Heat Increases
	Resistance Decreases	Resistance Decreases
Circuit	Switch turns on in the dark:	Switch turns on in a fire:

Batteries

Primary Cells	Secondary Cells
Cannot be recharged	Can be recharged by passing a current through the battery in the opposite direction as it would normally travel

	Variable Symbol	Unit
Electromotive Force (e.m.f)	ε	V
Current	I	A
Circuit Resistance	R	Ω
Internal Resistance	r	Ω

Data Booklet Equation:

$$
\varepsilon=\mathrm{I}(\mathrm{R}+\mathrm{r})
$$

Force Fields

Forces between objects
Coulomb's Law

	Variable Symbol	Unit
Electrostatic Force	F	N
Object 1 Charge	q_{1}	C
Object 2 Charge	q_{2}	C
Separation Distance	r	M
Coulomb Constant	k	$\mathrm{N} \mathrm{m}^{2} \mathrm{C}^{-2}$
Permittivity of Free Space	ε_{0}	$\mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$

Data Booklet Equations:

$$
\begin{aligned}
F & =k \frac{q_{1} q_{2}}{r^{2}} \\
& =\frac{1}{4 \pi \varepsilon_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{k}=8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}
\end{aligned}
$$

Universal Law of Gravitation

	Variable Symbol	Unit
Gravitational Force	F	N
Object 1 Mass	M	kg
Object 2 Mass	m	kg
Separation Distance	r	m
Gravitational Constant	G	$\mathrm{N} \mathrm{m}^{2} \mathrm{~kg}^{-2}$

Force Fields

Electric Field			Gravitational Field		
Symbol	E	Data Booklet Equation:			
Units	FC^{-1}		Symbol	F	
		Units	$\mathrm{F} \mathrm{kg}^{-1}$	$g=\frac{F}{m}$	$g=G \frac{M}{r^{2}}$

Right Hand Rule:

Right Hand Rule \#1			Right Hand Rule \#2			Right Hand Rule \#3									
Magnetic field around a current carrying wire			Pole orientation for a coil of wire (electromagnet, solenoid, etc.)			Electromagnetic force direction on a wire or moving particle									
Thumb	Current		Thumb	North Pole		Thumb		Current							
Fingers	Magnetic Field		Fingers	Current		Fingers	Magnetic Field								
	$\begin{aligned} & ((\mathrm{I} \stackrel{* *}{\rightleftarrows} \\ & \stackrel{* * *}{\stackrel{*}{\rightleftarrows}})) \end{aligned}$		$\text { s. }\left\\|\left\\|\left\\|\left\\|\left\\|\left\\|\\|_{\uparrow}^{\mathrm{N}}\right.\right.\right.\right.\right.\right.$		$\text { N }\left\|\left\|\left\|\left\|\left\|\left\|\left\|\left\|\left\|\left\|\left.\right\|_{\dagger} \mathrm{s}\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$										
					${ }_{s}{ }^{\dagger}\left(\|1\|(1\|1\| 1)^{\dagger}{ }_{\mathrm{N}}\right.$										

Electromagnetic Force

	Variable Symbol	Unit
Magnetic Force	F	N
Magnetic Field Strength	B	T
Current	I	A
Wire Length	L	m
Angle to Field	θ	\circ
Particle Charge	q	C
Particle Velocity	V	$\mathrm{m} \mathrm{s}^{-1}$

Data Booklet Equations:

Wire:

$$
F=B I L \sin \theta
$$

Particle:

$$
F=q v B \sin \theta
$$

Charged Particles Moving through a Magnetic Field

Thermal Physics

Specific Heat Capacity and Specific Latent Heat

	Variable Symbol	Unit		
Heat Energy	Q	J		
Mass	m	kg		
Specific Heat Capacity	C	$\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$		
Change in Temperature	$\Delta \mathrm{T}$	K		
Specific Latent Heat	L	J kg	\quad	
:---:				
$Q=m c \Delta T$				
$Q=m L$				

E_{K}	Kinetic Energy \rightarrow Temperature

Ep Potential Energy \rightarrow Phase Change

Heating Curves

Pressure

	Variable Symbol	Unit	
Force	F	N	
Area	A	m^{3}	
Pressure	p	$\mathrm{N} \mathrm{m}^{-3}$	

Data Booklet Equation:

$$
p=\frac{F}{A}
$$

Kinetic Theory and Temperature

	Variable Symbol	Unit
Average Kinetic Energy	$\overline{\mathrm{E}}_{\mathrm{k}}$	J
Absolute Temperature	T	K
Boltzmann's Constant	k_{b}	$\mathrm{J} \mathrm{K}^{-1}$

Data Booklet Equation:

$$
\begin{aligned}
& \bar{E}_{K}=\frac{3}{2} k_{B} T=\frac{3}{2} \frac{R}{N_{A}} T \\
& k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

Avogadro's Number	N_{A}	6.02×10^{23}

Ideal Gas Law

	Variable Symbol	Unit
Pressure	p	Pa
Volume	V	m^{-3}
Number of Molecules	n	mol
Gas Constant	R	$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Temperature	T	K

Data Booklet Equations:
$p V=n R T \quad R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Conditions for Ideal Gases:

Ideal Gas Relationships

Atomic Physics

Types of Decay

Half Life

Mass-Energy Equivalence

	Variable Symbol	Unit
Energy	E	J
Mass	m	kg
Speed of Light	c	$\mathrm{m} \mathrm{s}^{-1}$

Data Booklet Equation:

$$
\begin{gathered}
E=m c^{2} \\
c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
\end{gathered}
$$

Unified Atomic Mass Unit	u	$1.661 \times 10^{-27} \mathrm{~kg}$	1.000000 u	$931.5 \mathrm{MeV} \mathrm{c}^{-2}$

Electron Rest Mass	m_{e}	$9.110 \times 10^{-31} \mathrm{~kg}$	0.000549 u	$0.511 \mathrm{MeV} \mathrm{c}^{-2}$
Proton Rest Mass	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$	1.007276 u	$938 \mathrm{MeV} \mathrm{c}^{-2}$
Neutron Rest Mass	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$	1.008665 u	$940 \mathrm{MeV} \mathrm{c}^{-2}$

Converting between Joules and Electron-Volts
$\{$ Energy in eV $\}=\frac{\{\text { Energy in } J\}}{1.60 \times 10^{-19}} \quad\{$ Energy in $J\}=\{$ Energy in eV$\} \times 1.60 \times 10^{-19}$

Process for Calculating Binding Energy

1. Add up the "before and after" masses
2. Find the mass defect by taking the difference
3. Convert atomic mass units (u) into $\mathrm{MeV} \mathrm{c}^{-2}$ by using the conversion factor $1 \mathrm{u}=931.5 \mathrm{MeV} \mathrm{c}^{-2}$
4. The c^{-2} cancels out when converting to energy using $E=m c^{2}$ so this is your binding energy

	Describe	Examples	Challenges
FiSSiOn	Lighter elements are created by splitting heavier elements	Nuclear Power Nuclear Weapons	Proper amounts of fissionable elements required to maintain chain reaction
FUSiOn	Heavier elements are created by combining lighter elements	The Sun/Stars	Requires high heat and high pressure

Fundamental Particles

The following two tables are provided in the IB Physics Data Booklet

| Charge | Quarks | | | |
| :---: | :---: | :---: | :---: | :---: | | Baryon |
| :---: |
| Number | \left\lvert\, | $\frac{2}{3}$ | u | c | t |
| :---: | :---: | :---: | :---: |
| $-\frac{1}{3}$ | d | s | b | | All quarks have a strangeness number of 0 except the |
| :---: |
| strange quark that has a strangeness number of -1 |\right.

Charge	Leptons		
-1	e	μ	τ
0	v_{e}	v_{μ}	v_{τ}
All leptons have a lepton number of 1 and antileptons have a lepton number of -1			

Quarks			
Symbol	Name	Charge	Baryon \#
u	Up	$+\frac{2}{3}$	$\frac{1}{3}$
d	Down	$-\frac{1}{3}$	$\frac{1}{3}$
C	Charm	$+\frac{2}{3}$	$\frac{1}{3}$
S	Strange	$-\frac{1}{3}$	$\frac{1}{3}$
t	Top	$+\frac{2}{3}$	$\frac{1}{3}$
b	Bottom	$-\frac{1}{3}$	$\frac{1}{3}$

Leptons			
Symbol	Name	Charge	Lepton \#
e	Electron	-1	1
μ	Muon	-1	1
τ	Tau	-1	1
ν_{e}	Electron Neutrino	0	1
ν_{μ}	Muon Neutrino	0	1
ν_{τ}	Tau Neutrino	0	1

Anti-Quarks			
Symbol	Name	Charge	Baryon \#
$\overline{\mathrm{u}}$	Antiup	$-\frac{2}{3}$	$-\frac{1}{3}$
$\overline{\mathrm{~d}}$	Antidown	$+\frac{1}{3}$	$-\frac{1}{3}$
$\overline{\mathrm{c}}$	Anticharm	$-\frac{2}{3}$	$-\frac{1}{3}$
$\overline{\mathrm{~s}}$	Antistrange	$+\frac{1}{3}$	$-\frac{1}{3}$
$\overline{\mathrm{t}}$	Antitop	$-\frac{2}{3}$	$-\frac{1}{3}$
$\overline{\mathrm{~b}}$	Antibottom	$+\frac{1}{3}$	$-\frac{1}{3}$

Anti-Leptons			
Symbol	Name	Charge	Lepton \#
$\overline{\mathrm{e}}$	Antielectron (positron)	+1	-1
$\bar{\mu}$	Antimuon	+1	-1
$\bar{\tau}$	Antitau	+1	-1
$\bar{\nu}_{e}$	Electron Antineutrino	0	-1
$\bar{\nu}_{\mu}$	Muon Antineutrino	0	-1
$\bar{\nu}_{\tau}$	Tau Antineutrino	0	-1

Explain the phenomenon of Quark Confinement:

Quarks have never been observed on their own. The amount of energy required to overcome the strong nuclear force holding the quarks together gets converted into mass and forms a new quark pair.

Fundamental Forces

	Strength	Distance
Gravitational	Weakest	Long Range
Weak	Weak	Short Range
Electromagnetic	Strong	Very Long Range
Strong	Strongest	Very Short Range

Particle Configurations

Proton	Neutron		
d	\mathbf{u}		
U \mathbf{u}	$\mathbf{d} \mathbf{d}$		
Total Charge	+1	Total Charge	0

Feynman Diagrams

You can only draw two kinds of lines \qquad WM	You can only connect these lines if you have two lines with arrows meeting a single wiggly line	The x-axis represents time and is read from left to right. Everything left of the vertex is the "before" condition.
Beta-Negative Decay		Beta-Positive Decay
		$+e^{+}+v_{e}^{w^{+}}$

Energy Production

Global Energy Usage

Rank	Energy Source	$\%$
1	Oil	32%
2	Coal	28%
3	Natural Gas	22%
4	Biomass	10%
5	Nuclear	5%
6	Hydropower	2.5%

Efficiency

Efficiency $=\frac{\text { useful work out }}{\text { total work in }}=\frac{\text { useful power out }}{\text { total power in }}$		
Sankey Diagram Rules: Width of the arrow proportional to the amount of energy	Energy In	Out

Energy Density

	Definition	Units
Specific Energy	Energy transferred per unit mass	$\mathrm{J} \mathrm{kg}^{-1}$
Energy Density	Energy transferred per unit volume	$\mathrm{J} \mathrm{m}^{-3}$

Primary and Secondary Sources

Primary Energy Sources	Secondary Energy Sources
Energy sources found in the natural environment (fossil fuels, solar, wind, nuclear, hydro, etc.)	Useful transformations of the primary sources (electricity, pumped storage for hydro, etc.)

Fossil Fuels

Number of years left in global reserves	
Coal	$\sim 100-150$ years
Oil	~ 50 years
Natural Gas	~ 50 years

Describe the process of Fracking:

1. Drill hole into shale rock
2. Inject fracking fluid at high pressure to create cracks
3. Extract newly released natural gas
4. Seal fracking fluid in the hole

Nuclear Power

	$\%$ of U-235
Uranium Ore	0.7%
Fuel-Grade	3.5%
Weapons-Grade	90%

Why is the concentration of U-235 important?
Only U-235 can undergo a fission chain reaction
What is done with the nuclear waste?
Stored on-site in spent fuel pools and/or concrete dry cask storage

Slows down neutrons to be absorbed by U-235 Made from Water or Graphite (carbon)

Control Rods

Absorbs neutrons to limit number of chain reactions Made from Boron

Renewable Energy

	Variable Symbol	Unit	Data Booklet Equations:
Power	P	W	$\text { Power }=\frac{1}{2} A \rho v^{3}$
Cross-Sectional Area	A	m^{2}	
Air Density	ρ	$\mathrm{kg} \mathrm{m}^{-3}$	$\mathrm{A}=\pi r^{2}$
Air Speed	V	$\mathrm{m} \mathrm{s}^{-1}$	
Photovoltaic Cells	Solar Concentrator		Solar Heating Panel
Converts solar energy directly into electricity. Useful in solar panels on top of building or solar farms connected to the energy grid	Mirrors focus sunlight onto a central tower. The high thermal energy is converted to steam and runs turbines to produce electricity		Sun's radiation is absorbed by black pipes that transfer thermal energy to the water flowing through them. Replaces hot water heater.

	Biomass	Coal	Geothermal	Hydropower	Natural Gas	Nuclear	Petroleum	Solar	Wind
Renewable	\checkmark		\checkmark	\checkmark				\checkmark	\checkmark
Produces CO_{2}	\checkmark	\checkmark			\checkmark		\checkmark		

Thermal Energy Transfer

Conduction	Convection	Radiation
Energy is transferred through molecular collisions	Energy circulates through the expansion and rising of hot fluids	Energy is transferred through electromagnetic radiation. Can travel through a vacuum

| | Emissivity | Black Body Radiation |
| :---: | :---: | :---: | :---: | :---: |
| Sun | ~ 1 | |
| Earth | ~ 0.6 | |
| An idealized object that | | |
| Black-Body | 1 | |
| absorbs all the | | |
| electromagnetic radiation | | |
| the falls on it | | |

Power Emissivity	Variable Symbol	Unit
Power	P	W
Emissivity	e	---
Surface Area	A	m^{2}
Temperature	T	K
Max Wavelength	$\lambda_{\max }$	m

Data Booklet Equations:

$$
\begin{gathered}
P=e \sigma A T^{4} \\
\lambda_{\max }=\frac{2.90 \times 10^{-3}}{T} \\
\sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}
\end{gathered}
$$

Solar Radiation and Climate Change

Intensity	Variable Symbol	Unit	Data Booklet Equations:
Intensity	I	W m ${ }^{-2}$	$I=\text { power }$
Power	P	W	
Area	A	m^{2}	$A_{\text {sphere }}=4 \pi r^{2}$
Greenhouse Gases	Positive Feedback Loop		Negative Feedback Loop
Water Vapor ($\mathrm{H}_{2} \mathrm{O}$)	Melting ice (decreases albedo)		Cloud formation (increases albedo)
Carbon Dioxide (CO_{2})	Melting permafrost (releases methane)		Increased photosynthesis (uses CO_{2})
Methane (CH_{4})	Rising ocean temp releases methane		Climate Change leads to renewables

Astrophysics

The Scale of Astrophysics

Unit Conversion	Definition
1 light year $(\mathrm{ly})=9.46 \times 10^{15} \mathrm{~m}$	The distance the light travels in an earth year
$1 \operatorname{parsec}(\mathrm{pc})=3.26 \mathrm{ly}$	The average distance between the earth and the sun
1 astronomical unit $(\mathrm{AU})=1.50 \times 10^{11} \mathrm{~m}$	The distance at which the mean radius of the earth's orbit subtends an angle of 1 arc second

Stellar Quantities

Brightness	Luminosity
Star intensity to an observer on earth	How much total power a star emits
Units: $\mathrm{W} \mathrm{m}^{-2}$	Units: W

	Variable Symbol	Unit	Data Booklet Equations:
Distance	d	pc	
Parallax Angle	p	sec	(arc-second $)$
Brightness	b	W m ${ }^{-2}$	$=\frac{L}{}$
Luminosity	L	W	
Max Wavelength	$\lambda_{\text {max }}$	m	$\lambda_{\text {max }} T=2.9 \times 10^{-3} \mathrm{~m} \mathrm{~K}$
Temperature	T	K	$L=\sigma A T^{4}$
Surface Area	A	m^{2}	$\sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$

Describe the process of Stellar Parallax: Observe how far a star moves relative to distant stars six months apart so that earth has its maximum displacement and an angle can be measured

Atomic Spectra

	Variable Symbol	Unit
Energy	E	J or eV
Planck's Constant	h	J s
Frequency	f	Hz
Speed of Light	c	$\mathrm{m} \mathrm{s}^{-1}$
Wavelength	λ	m

Data Booklet Equations:

$$
\begin{gathered}
E=h f \\
\lambda=\frac{h c}{E} \\
h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
\end{gathered}
$$

hc

$$
1.99 \times 10^{-25} \mathrm{~J} \mathrm{~m}
$$

$1.24 \times 10^{-6} \mathrm{eV} \mathrm{m}$

H-R Diagrams and Life Cycle of a Star

Label the Following:

- Main Sequence
- White Dwarfs
\square Red Giants
\square The Sun
\square Line representing the life cycle of our sun

Chandrasekhar Limit		Oppenheimer-Volkhoff Limit	
The maximum mass of a core that can become a white dwarf is 1.4 times the mass of the sun $\left(1.4 \mathrm{M}_{\odot}\right)$		The maximum mass of a core that can become a neutron star is 3 times the mass of the sun ($3 \mathrm{M}_{\odot}$)	
Sun Like Stars (<1.5 M ${ }^{\text {) }}$) \downarrow White Dwarf	$\begin{aligned} & \text { Huge Stars }\left(1.5-3 \mathrm{M}_{0}\right) \\ & \downarrow \end{aligned}$		$\begin{aligned} & \text { Giant Stars }\left(>3 \mathrm{M}_{0}\right) \\ & \quad \end{aligned}$ Black Hole

The Expanding Universe

Standard Candles	Evidence for Expanding Universe
Objects of known luminosity that can be used with the apparent brightness to measure distance from earth	Hubble discovered that the farther away stars and galaxies are, the more their light is redshifted.
Cephid Variables and Type Ia Supernovas	This means, more distant objects are traveling faster than nearer objects.

	Variable Symbol	Unit
Redshift	z	---
Change in Wavelength	$\Delta \lambda$	m
Original Wavelength	λ_{0}	m
Relative Velocity of Source	V	$\mathrm{m} \mathrm{s}^{-1}$
Speed of Light	C	$\mathrm{m} \mathrm{s}^{-1}$
Current Scale Factor	R	---
Scale Factor when Emitted	R_{0}	---
Hubble's Constant	H_{0}	$\mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$

Data Booklet Equations:

$$
\begin{gathered}
z=\frac{\Delta \lambda}{\lambda_{0}} \approx \frac{v}{c} \\
z=\frac{R}{R_{0}}-1 \\
v=H_{0} d \\
c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
H_{0} \approx 70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}
\end{gathered}
$$

The Big Bang

	Peak Wavelength	Temperature
Cosmic Microwave Background Radiation	$\sim 0.001 \mathrm{~m}(1 \mathrm{~mm})$	$\sim 2.9 \mathrm{~K}$

Describe why the CMB is evidence of the Big Bang:

The CMB is the heat signature from the early universe. As the universe has expanded to its current size, the wavelength stretched out to the current value seen in the CMB. This radiation is fairly uniform and it can be observed in every direction.

