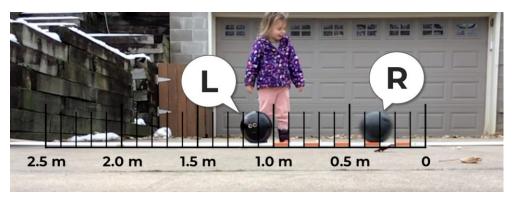
Momentum Mini Labs

Name: _____

For each of these mini labs, complete the task provided and show all work.


Equations and Constants

$v = d/t$ $PE_g = mgh$	$KE = \frac{1}{2}mv^2$	p = mv	$Impulse = F\Delta t = \Delta p$	$g = 9.81 m/s^2$
------------------------	------------------------	--------	----------------------------------	-------------------

Part 1: Bowling Ball Collision - What's the Mass?

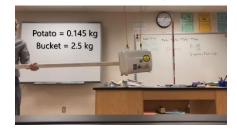
If there are no external forces causing an impulse on a system, we can assume that the total momentum of the system will be conserved. Use the overlay to measure and the included stopwatch on the slo mo video to measure a change in time in order to calculate velocity

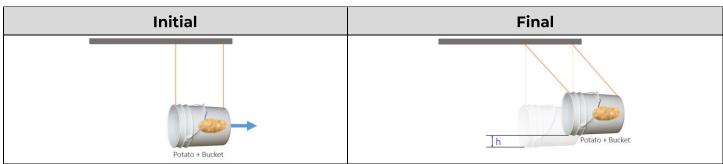
Use the conservation of momentum to **calculate the mass of the bowling ball on the left** if the one on the right has a mass of 5.6 kg

Click Here for Video

Mass L			Mass R	5.6 kg
--------	--	--	--------	--------

Initial		
Velocity L	0 m/s	
Velocity R		


Final		
Velocity L		
Velocity R		


Part 2: Potato Gun Ballistic Pendulum - What's the Velocity?

A clever way to measure the velocity of a very fast projectile (like a potato out of a potato gun) is to fire it into a more massive pendulum and measure the highest point in the swing.

Click Here for Video

Step 1: Conservation of Energy

Use the conservation of energy and the maximum height of the bucket's swing to **calculate the top velocity of the bucket and potato** when it starts swinging after the collision.

Step 2: Conservation of Momentum

Initial	Final
Potato	Potato + Bucket

Use the conservation of momentum and the velocity of the potato/bucket system from part 1 to calculate the initial velocity of the potato

Potato Velocity

Step 3: Impulse and Momentum

Use the impulse and momentum with the potato velocity from part 2 and the time the potato was in the barrel to **calculate the force of the potato gun**

Potato Gun Force