Units

IB PHYSICS | MOTION

Two Types of Observations

Provide some examples of each

Quantitative
"How Many" / "How Much" Numerical

Qualitative
Description

Measurement

How can you quantify a measurement?

Systems and Units

Fundamental S.I. Units:

$\left\{\begin{array}{l|c|c|}\hline \text { Length } & \text { Meter } & \mathrm{m} \\ \hline \text { Mass } & \text { Kilogram } & \mathrm{kg} \\ \hline \text { Time } & \text { Second } & \mathrm{s} \\ \hline \text { Electric Current } & \text { Ampere (amp) } & \mathrm{A} \\ \hline \text { Temperature } & \text { Kelvin } & \mathrm{K} \\ \hline \text { Amount of Substance } & \text { Mole } & \mathrm{mol} \\ \hline \text { Luminous Intensity } & \text { Candela } & \mathrm{cd} \\ \hline\end{array}\right.$

Units are Arbitrary

1790 - The length of a pendulum that swings half of its maximum distance in one second

1795 - The length of an official bar of brass fabricated to be exactly one meter as determined in 1791

1889 - The distance
between two lines on an official bar of platinumiridium alloy, measured at $0^{\circ} \mathrm{C}$

1791 - The length of one ten-millionth of the distance between the North Pole and the equator

1799 - The length of an official bar of platinum, measured from the brass bar and stored at the French National archives

1983 - The length traveled
by light in a vacuum during
$1 / 299,792,458$ of a second

What's 'the standard'?

All of our base SI units are grounded in some "standard" that helps maintain consistency.

Some of these units even reference each other...

Definition of the Second

12
The "second" is defined as the interval required for $9,192,631,770$ vibrations of the cesium-133 atom measured via an atomic beam clock

Primary and Secondary Colors

Primary Colors

Secondary Colors

Fundamental vs Derived

Fundamental

 S.I. Units| Length | m |
| :---: | :---: |
| Mass | kg |
| Time | s |

Derived Units

Velocity:

$$
m / s
$$

Acceleration:

$$
m /_{S^{2}}=m / s /_{S}
$$

Force:

$$
N=k g \times m / s^{2}
$$

Welcome to IB Land!

Since this course is International all of the units must be in the "European" format rather than the "American" format This means that instead of writing units with a fraction slash, we must use negative exponents

$7 \mathrm{~m} / \mathrm{s}$	$\mathrm{m} \mathrm{s}^{-1}$	$6.67 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$	$\mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$9.81 \mathrm{~m} / \mathrm{s}^{2}$	$\mathrm{~m} \mathrm{~s}^{-2}$	$2.2 \frac{\mathrm{~J}}{\mathrm{~K}}$	J K
-1			
$87 \mathrm{~g} / \mathrm{cm}^{3}$	$\mathrm{~g} \mathrm{~cm}^{-3}$	$8.31 \frac{\mathrm{~J}}{\mathrm{~K} \times \mathrm{mol}}$	$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$

The Metric System

	Prefix	Abbreviation	Value
V	peta	P	10^{15}
¢	tera	T	10^{12}
$\stackrel{\Gamma}{0}$	giga	G	10^{9}
y	mega	M	10^{6}
	kilo	k	10^{3}
\bigcirc	hecto	h	10^{2}
$\xrightarrow{(1)}$	deca	da	10^{1}
	deci	d	10^{-1}
은	centi	c	10^{-2}
\geq	milli	m	10^{-3}
(1)	micro	μ	10^{-6}
\bigcirc	nano	n	10^{-9}
$\frac{1}{10}$	pico	p	10^{-12}
*	femto	f	10^{-15}

The Metric System

Prefix	Abbreviation	Value
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	m	10^{-6}
nano	p	10^{-9}
femto	10^{-12}	

The value given is the number of places the decimal moves

Please make sure that you go in the correct direction!
$900 \mathrm{~nm}=900,000,000,000 \mathrm{~m}$
or
$900 \mathrm{~nm}=0.0000009 \mathrm{~m}$

The Metric System

Prefix	Abbreviation	Value
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}

$900 \mathrm{~nm} \rightarrow \underline{0.0000009} \mathrm{~m}$

$900 \times 10^{-9} \mathrm{~m}$

The Metric System

Prefix	Abbreviation	Power	Conversions:
giga-	G	10^{9}	$250 \mathrm{~g}=0.25 \mathrm{~kg}$
mega-	M	10^{6}	
kilo-	K	10^{3}	
$3\left(\begin{array}{l} \text { hecto- } \\ \text { deca- } \end{array}\right.$	$\begin{gathered} h \\ d a \end{gathered}$	$\left.\begin{array}{l} 10^{2} \\ 10^{1} \end{array}\right)^{3}$	$0.00325 \mathrm{~kg}=3,250,000 \mu \mathrm{~g}$
deci-	$\begin{gathered} \text { Base } \\ \text { d } \end{gathered}$		
3 centi-	c	10^{-2}	
milli-	m	10^{-3}	$54 \mathrm{~mm}=0.000054 \mathrm{~km}$
micro-	μ	10^{-6}	
nano-	n	10^{-9}	

The Metric System | Try These

Prefix	Abbreviation	Power	$65 \mu \mathrm{C}=0.000065 \mathrm{C}$
giga-	G	10^{9}	
mega-	M	10^{6}	6
kilo-	K	10^{3}	
hecto-	h	10^{2}	
deca-	da	10^{1}	$12 \mathrm{MW}=\underline{12,000,000} \mathrm{~W}$
	Base	\%	
deci-	d	10^{-1}	
centi-	c	10^{-2}	
milli-	m	10^{-3}	
micro-	μ	10^{-6}	
nano-	n	10^{-9}	

The Metric System

SI prefixes

$1000{ }^{\text {n }}$	10^{n}	Prefix	Symbol	Short scale	Long scale	Decimal equivalent in SI writing style
1000^{8}	10^{24}	yotta-	Y	Septillion	Quadrillion	1000000000000000000000000
1000^{7}	10^{21}	zetta-	z	Sextillion	Trilliard (thousand trillion)	1000000000000000000000
1000^{β}	10^{18}	exa-	E	Quintillion	Trillion	1000000000000000000
1000^{5}	10^{15}	peta-	P	Quadrillion	Billiard (thousand billion)	1000000000000000
1000^{4}	10^{12}	tera-	T	Trillion	Billion	1000000000000
1000^{3}	10^{9}	giga-	G	Billion	Milliard (thousand million)	1000000000
1000^{2}	10^{6}	mega-	M		Million	1000000
$1000{ }^{1}$	10^{3}	kilo-	k		Thousand	1000
$1000^{2 / 3}$	10^{2}	hecto-	h		Hundred	100
$1000{ }^{1 / 3}$	10^{1}	deca-	da		Ten	10
1000°	10°	(none)	(none)		One	1
$1000^{-1 / 3}$	10^{-1}	deci-	d		Tenth	0.1
$1000^{-2 / 3}$	10^{-2}	centi-	c		Hundredth	0.01
1000^{-1}	10^{-3}	milli-	m		Thousandth	0.001
1000^{-2}	10^{-6}	micro-	μ		Millionth	0.000001
1000^{-3}	10^{-9}	nano-	n	Billionth	Milliardth	0.000000001
1000^{-4}	10^{-12}	pico-	P	Trillionth	Billionth	0.000000000001
1000^{-5}	10^{-15}	femto-	f	Quadrillionth	Billiardth	0.000000000000001
1000^{-6}	10^{-18}	atto-	a	Quintillionth	Trillionth	0.000000000000000001
1000^{-7}	10^{-21}	zepto-	z	Sextillionth	Trilliardth	0.000000000000000000001
1000^{-8}	10^{-24}	yocto-	y	Septillionth	Quadrillionth	0.000000000000000000000001

There's more...

Lesson Takeaways

\square I can describe the difference between quantitative and qualitative observations
\square I can identify the 7 Fundamental SI units
\square I can define and give an example of a derived unit
\square I can represent fractional units with negative exponents
\square I can convert metric units between prefixes

