Dimensional Analysis

IB PHYSICS | MOTION

Conversions

Convert the Following:
26.2 miles \rightarrow kilometers

1 Mile = 1.609 Kilometers
$26.2 \mathrm{mi} \times \frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}=42.2 \mathrm{~km}$

Conversions with fractions

Convert the Following:

$35 \mathrm{mi} \mathrm{hr}^{-1} \rightarrow \mathrm{~m} \mathrm{~s}^{-1}$

$$
\frac{35 \mathrm{mil}}{1 \mathrm{bi}} \times \frac{1609 \mathrm{~m}}{1 \mathrm{mi}} \times \frac{1 \mathrm{~b}}{60 \mathrm{mit}} \times \frac{1 \mathrm{mit}}{60 \mathrm{~s}}=15.6 \mathrm{~m} \mathrm{~s}^{-1}
$$

Conversions with Exponents

How many cm^{2} are there in $1 \mathrm{~m}^{2}$?

$$
100 \times 100=100^{2}=\mathbf{1 0}, \mathbf{0 0 0} \mathrm{cm}^{2}
$$

How many cm^{3} are there in $1 \mathrm{~m}^{3}$?

$100 \times 100 \times 100=100^{3}=\mathbf{1}, \mathbf{0 0 0}, \mathbf{0 0 0} \mathbf{c m}^{2}$

Conversions with Exponents

Convert the Following:
$0.05 \mathrm{~km}^{2} \rightarrow \mathrm{~m}^{2}$
$0.05 \mathrm{~km}^{2} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=50,000 \mathrm{~m}^{2}$
$0.05 \mathrm{~km}^{2} \times\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}=50,000 \mathrm{~m}^{2}$

Conversions with Exponents

Convert the Following:

1 meter $=3.28$ feet

$5 \mathrm{~m}^{2} \rightarrow \mathrm{ft}^{2}$

$$
5 \mathrm{~m}^{2} \times\left(\frac{3.28 \mathrm{ft}}{1 \mathrm{~m}}\right)^{2}=53.8 \mathrm{ft}^{2}
$$

$5 \mathrm{~m}^{3} \rightarrow \mathrm{ft}^{3}$

$$
5 \mathrm{~m}^{3} \times\left(\frac{3.28 \mathrm{ft}}{1 \mathrm{~m}}\right)^{3}=\mathbf{1 7 6 . 4 \mathrm { ft } ^ { 3 }}
$$

Dimensional Analysis

Start with the formula and substitute units in for variables

$$
v=\frac{d}{t} \quad\left[\frac{m}{s}\right]=\frac{[m]}{[s]}
$$

Is this formula valid?

$$
d=\text { at } \quad[m]=\left[\frac{m}{s^{2}}\right][s]
$$

Dimensional Analysis

We can use equations with units that we know to find units that we don't.

$$
\begin{aligned}
p & =m \times v \\
& =[\mathrm{kg}]\left[\frac{\mathrm{m}}{\mathrm{~s}}\right]
\end{aligned}
$$

Variable	Unit
Momentum \mathbf{p}	Kg m s
Mass	
\mathbf{m}	Kilogram $[\mathrm{kg}]$
Velocity \mathbf{v}	Meters per second $\left[\mathrm{ms}^{-1}\right]$

Dimensional Analysis

Constants have units too! That's what makes our equation valid

$$
\begin{array}{r}
F=G \frac{m_{1} m_{2}}{d^{2}} \\
G=\frac{F d^{2}}{m_{1} m_{2}}=\frac{[\mathrm{N}][\mathrm{m}]^{2}}{[\mathrm{~kg}][\mathrm{kg}]} \\
=\frac{[\mathrm{N}][\mathrm{m}]^{2}}{[\mathrm{~kg}]^{2}}
\end{array}
$$

Variable

Force	Newton
\mathbf{F}	
Mass m_{1} and $\mathrm{m}_{\mathbf{2}}$	Kilogram
$[\mathrm{kg}]$	

Normalized Scientific Notation

Helpful for very big numbers

$89,000,000=8.9 \times 10^{7}$ or 8.9 E 7
$750,000,000,000=7.5 \times 10^{11}$ or 7.5 E 11
$8,759,000,000=8.759 \times 10^{9}$ or 8.759 E 9

Normalized Scientific Notation

Helpful for very small numbers

$$
0.00125=\quad 1.25 \times 10^{-3} \text { or } 1.25 \mathrm{E}-3
$$

$0.0000008255=8.255 \times 10^{-7}$ or $8.255 \mathrm{E}-7$
$0.00000082550=8.2550 \times 10^{-7}$ or $8.2550 \mathrm{E}-7$

Lesson Takeaways

I can convert fraction units and exponential units using Dimensional Analysis
I can use dimensional analysis to verify a formula
I can use dimensional analysis to determine the units for a solution

I can represent large and small numbers using scientific notation

