IB PHYSICS | MOTION

Conversions

Convert the Following:

26.2 miles \rightarrow kilometers

1 Mile = 1.609 Kilometers

$$26.2 \text{ mi} \times \frac{1.609 \text{ km}}{1 \text{ mi}} = 42.2 \text{ km}$$

Conversions with fractions

Convert the Following:

35 mi hr⁻¹ → m s⁻¹

1 Mile = 1609 meters

Conversions with Exponents

How many cm^2 are there in 1 m^2 ?

 $100 \times 100 = 100^2 = 10,000 \text{ cm}^2$

How many cm^3 are there in 1 m^3 ?

 $100 \times 100 \times 100 = 100^3 = 1,000,000 \text{ cm}^2$

Conversions with Exponents

Convert the Following:

 $0.05 \text{ km}^2 \rightarrow \text{m}^2$

$$0.05 \text{ km}^2 \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1000 \text{ m}}{1 \text{ km}} = 50,000 \text{ m}^2$$
$$0.05 \text{ km}^2 \times \left(\frac{1000 \text{ m}}{1 \text{ km}}\right)^2 = 50,000 \text{ m}^2$$

Conversions with Exponents

Convert the Following:

1 meter = 3.28 feet

 $5 \text{ m}^2 \rightarrow \text{ft}^2$ $5 \text{ m}^2 \times \left(\frac{3.28 \text{ ft}}{1 \text{ m}}\right)^2 = 53.8 \text{ ft}^2$

 $5 \text{ m}^3 \rightarrow \text{ft}^3$

$$5 \text{ m}^3 \times \left(\frac{3.28 \text{ ft}}{1 \text{ m}}\right)^3 =$$
176.4 ft³

Start with the formula and substitute units in for variables

 $v = \frac{d}{t} \qquad \qquad \left[\frac{m}{s}\right] = \frac{[m]}{[s]}$

Is this formula valid?

$$d = at$$
 $[m] = \left[\frac{m}{s^2}\right][s]$ not valid $[m] = \left[\frac{m}{s}\right]$

We can use equations with units that we know to find units that we don't.

 $p = m \times v$

 $= [kg] \left[\frac{m}{s}\right]$

Variable	Unit	
Momentum p	kg m s ⁻¹	
Mass	Kilogram	
m	[kg]	
Velocity	Meters per second	
v	[ms ⁻¹]	

Constants have units too! That's what makes our equation valid

$F = \frac{G}{d^2} \frac{m_1 m_2}{d^2}$	Variable	Unit
	Force F	Newton [N]
$G = \frac{Fd^2}{m_1m_2} = \frac{[N][m]^2}{[kg][kg]}$	Mass m₁ and m₂	Kilogram [kg]
	Distance d	Meter [m]
$=\frac{[N][m]^2}{[kg]^2}$	Universal Gravitation Constant G	N m ² kg ⁻²

Normalized Scientific Notation

Helpful for very **big** numbers

- $89,000,000 = 8.9 \times 10^7$ or 8.9E7
- $750,000,000,000 = 7.5 \times 10^{11}$ or 7.5E11
- 8,759,000,000 = 8.759 × 10⁹ or 8.759E9

Normalized Scientific Notation

Helpful for very **small** numbers

 $0.00125 = 1.25 \times 10^{-3}$ or 1.25E-3

- $0.000008255 = 8.255 \times 10^{-7}$ or 8.255E-7
- $0.0000082550 = 8.2550 \times 10^{-7}$ or 8.2550E-7

Lesson Takeaways

- I can convert fraction units and exponential units using Dimensional Analysis
- □ I can use dimensional analysis to verify a formula
- I can use dimensional analysis to determine the units for a solution
- I can represent large and small numbers using scientific notation