Dimensional Analysis

IB PHYSICS | MOTION

Conversions

Convert the Following:

26.2 miles \rightarrow kilometers

1 Mile = 1.609 Kilometers

Conversions with fractions

Convert the Following:
$35 \mathrm{mi} \mathrm{hr}^{-1} \rightarrow \mathrm{~m} \mathrm{~s}^{-1}$
1 Mile = 1609 meters

Conversions with Exponents

How many cm^{2} are there in $1 \mathrm{~m}^{2}$?

How many cm^{3} are there in $1 \mathrm{~m}^{3}$?

Conversions with Exponents

Convert the Following:

$0.05 \mathrm{~km}^{2} \rightarrow \mathrm{~m}^{2}$

Conversions with Exponents

Convert the Following: 1 meter $=3.28$ feet
$5 \mathrm{~m}^{2} \rightarrow \mathrm{ft}^{2}$
$5 \mathrm{~m}^{3} \rightarrow \mathrm{ft}^{3}$

Dimensional Analysis

Start with the formula and substitute units in for variables

$$
v=\frac{d}{t}
$$

Is this formula valid?

$$
d=a t
$$

Dimensional Analysis

We can use equations with units that we know to find units that we don't.

$p=m \times v$

Variable	Unit
Momentum \mathbf{p}	
Mass \mathbf{m}	Kilogram $[\mathrm{kg}]$
Velocity \mathbf{v}	Meters per second $\left[\mathrm{ms}^{-1}\right]$

Dimensional Analysis

Constants have units too! That's what makes our equation valid

$$
F=G \frac{m_{1} m_{2}}{d^{2}}
$$

Variable	Unit
Force	Newton
\mathbf{F}	$[\mathrm{N}]$
Mass $\mathbf{m}_{\mathbf{1}}$ and $\mathbf{m}_{\mathbf{2}}$ Kilogram Distance $[\mathrm{kg}]$	
\mathbf{d}	Meter
Universal	
Gravitation Constant	
\mathbf{G}	

Normalized Scientific Notation

Helpful for very big numbers

$89,000,000=$

750,000,000,000 =
$8,759,000,000=$

Helpful for very small numbers

$0.00125=$
$0.0000008255=$
$0.00000082550=$

Lesson Takeaways

I can convert fraction units and exponential units using Dimensional Analysis
I can use dimensional analysis to verify a formula
I can use dimensional analysis to determine the units for a solution

I can represent large and small numbers using scientific notation

