IB PHYSICS | MOTION

Conversions

Convert the Following:

26.2 miles \rightarrow kilometers

1 Mile = 1.609 Kilometers

Conversions with fractions

Convert the Following:

35 mi hr⁻¹ → m s⁻¹

1 Mile = 1609 meters

Conversions with Exponents

How many cm^2 are there in 1 m^2 ?

How many cm^3 are there in 1 m^3 ?

Conversions with Exponents

Convert the Following:

 $0.05 \text{ km}^2 \rightarrow \text{m}^2$

Conversions with Exponents

Convert the Following:

1 meter = 3.28 feet

 $5 \text{ m}^2 \rightarrow \text{ft}^2$

 $5 \text{ m}^3 \rightarrow \text{ft}^3$

Start with the formula and substitute units in for variables

 $v = \frac{d}{t}$

Is this formula valid?

$$d = at$$

We can use equations with units that we know to find units that we don't.

 $p = m \times v$

Variable	Unit
Momentum p	
Mass	Kilogram
m	[kg]
Velocity	Meters per second
v	[ms ⁻¹]

Constants have units too! That's what makes our equation valid

$$F = \frac{G}{d^2} \frac{m_1 m_2}{d^2}$$

Variable	Unit
Force F	Newton [N]
Mass m_1 and m_2	Kilogram [kg]
Distance d	Meter [m]
Universal Gravitation Constant G	

Normalized Scientific Notation

Helpful for very **big** numbers

89,000,000 =

750,000,000,000 =

8,759,000,000 =

Normalized Scientific Notation

Helpful for very **small** numbers

0.00125 =

0.000008255 =

0.0000082550 =

Lesson Takeaways

- I can convert fraction units and exponential units using Dimensional Analysis
- □ I can use dimensional analysis to verify a formula
- I can use dimensional analysis to determine the units for a solution
- I can represent large and small numbers using scientific notation