Calculating from Graphs

IB PHYSICS | MOTION

Motion Graphs Guide

Calculating Instantaneous Velocity

The power of the slope!

$\frac{0}{\sim}$

Average Speed and Velocity

Total Distance Average Speed $=\frac{\text { Total Time }}{}$ * Always Positive

Total Displacement

Average Velocity = Total Time * Includes Direction

Calculating Average Speed

Eliud Kipchoge broke the 2-hour marathon (26.2 miles) in October of 2019. Kipchoge finished in 1.99 hours. What was his average speed in mph?

Average vs Instantaneous

An object speeding up (positive)

3
3
2

The power of the slope!

$\frac{0}{\sim}$

Calculating Displacement

Information from a V vs T graph

What is the velocity at 4 seconds?

$$
4 \mathrm{~m} \mathrm{~s}^{-1}
$$

What is the acceleration from $1 s-4 s$?

$$
\text { Slope }=1 \mathrm{~m} \mathrm{~s}^{-2}
$$

What is the displacement after 4 s ?

$$
\text { Area = } 8 \text { m }
$$

Information from a V vs T graph

What is the velocity at 4 seconds?

$$
-4 \mathrm{~m} \mathrm{~s}^{-1}
$$

What is the acceleration from $0 s-4 s$?

$$
\text { Slope }=-1 \mathrm{~m} \mathrm{~s}^{-2}
$$

What is the displacement after 4 s ?

$$
\text { Area }=-8 \mathrm{~m}
$$

Information from a V vs T graph

What is the velocity at 4 seconds?

$$
4 \mathrm{~m} \mathrm{~s}^{-1}
$$

What is the acceleration from $0 s-4 s$?

$$
\text { Slope }=0.5 \mathrm{~m} \mathrm{~s}^{-2}
$$

What is the displacement after 4 s ?

$$
\text { Area = } 12 \text { m }
$$

Information from a V vs T graph

What is the velocity at 3 seconds?

$$
-2 \mathrm{~m} \mathrm{~s}^{-1}
$$

What is the acceleration from $1 s-3 s$?

$$
\text { Slope }=-2 \mathrm{~m} \mathrm{~s}^{-2}
$$

What is the displacement after 3 s ?

$$
(2)+(1)+(-1)=\text { Area }=2 \mathrm{~m}
$$

Use the graphs to tell you MORE!

© Displacement vs Time

은 Velocity
Displacement

Velocity vs Time

Lesson Takeaways

\square I can use an equation to calculate average speed/velocity
\square I can calculate instantaneous velocity using the slope of a displacement vs time graph

I can calculate instantaneous acceleration using the slope of a velocity vs time graph
\square I can calculate overall displacement using the area of a velocity vs time graph

