Projectile Motion

IB PHYSICS | MOTION

Reminder of our Equations

Units	m	$m s^{-1}$	$\mathrm{~ms}^{-1}$	$m s^{-2}$	s
$v=u+a t$		u	v	a	t
$s=u t+\frac{1}{2} a t^{2}$	s	u		a	t
$v^{2}=u^{2}+2 a s$	s	u	v	a	
$s=\frac{(v+u) t}{2}$	s	u	v		t

Dropping the Ball

How much time will it take this ball to hit the ground when dropped? The impact velocity?

s	-25 m
u	$0 \mathrm{~m} \mathrm{~s}^{-1}$
v	$?$
a	$-9.81 \mathrm{~m} \mathrm{~s}^{-2}$
t	$?$

Air Time - Comparison

$\xrightarrow[10 \mathrm{~m} / \mathrm{s}]{\longrightarrow}$

Which ball will have more air time?

Air Time - Comparison

Horizontal Projectile

One Dimensional Motion

Vertical Accelerating

Horizontal
 Constant Velocity
 $$
[\mathbf{v}=\mathrm{d} / \mathrm{t}]
$$

Two-Dimensional Projectile

Which one lands first??

Which one lands first??

Lesson Takeaways

\square I can compare the motion of an object dropped from rest and an object with an initial horizontal velocity
\square I can calculate the air time and speed for a horizontal projectile

I can describe how the vertical and horizontal components are independent from each other for a projectile's motion
\square I can compare the air time for two projectiles given their trajectories.

