MOTION

IB PHYSICS | COMPLETED NOTES

Units

IB PHYSICS | MOTION

Two Types of Observations

Provide some examples of each

Quantitative	"How Many" / "How Much" Numerical
Qualitative	Description

How can you **quantify** a measurement?

Systems and Units

Fundamental S.I. Units:

Length	Meter	m
Mass	Kilogram	kg
Time	Second	S
Electric Current	Ampere (amp)	Α
Temperature	Kelvin	K
Amount of Substance	Mole	mol
Luminous Intensity	Candela	cd

Units are Arbitrary

What's 'the standard'?

All of our base SI units are grounded in some "standard" that helps maintain consistency.

Some of these units even reference each other...

Definition of the Second

The "second" is defined as the interval required for 9,192,631,770 vibrations of the cesium-133 atom measured via an atomic beam clock

Primary and Secondary Colors

Primary Colors

Secondary Colors

Fundamental vs Derived

Fundamental S.I. Units

Length	m
Mass	kg
Time	S

Derived Units

Velocity:

Acceleration:

 $m_{/S}$

 $m_{S^2} = m_{S'_s}$

Force:

 $N = kg \times m/_{S^2}$

Welcome to IB Land!

Since this course is *International* all of the units must be in the "European" format rather than the "American" format This means that instead of writing units with a fraction slash, we must use negative exponents

7 m/s	m s⁻¹	$6.67 \frac{\mathrm{Nm^2}}{\mathrm{kg^2}}$	N m ² kg ⁻²
9.81 m/s ²	m s ⁻²	2.2 <u>J</u> K	J K ⁻¹
87 g/cm ³	g cm ⁻³	$8.31 \frac{J}{K \times mol}$	J K ⁻¹ mol ⁻¹

ţ	Prefix	Abbreviation	Value
okle	peta	Р	1015
*Taken directly from the IB Physics Data Booklet	tera	Т	1012
ata	giga	G	109
C D	mega	М	106
ysic	kilo	k	10 ³
3 Ph	hecto	h	102
e E	deca	da	101
h th	deci	d	10-1
fron	centi	с	10-2
tly 1	milli	m	10-3
irec	micro	μ	10-6
n d	nano	n	10-9
ake	pico	р	10-12
⊢ *	femto	f	10-15

Prefix	Abbreviation	Value
peta	Р	1015
tera	Т	1012
giga	G	109
mega	М	106
kilo	k	10 ³
hecto	h	10 ²
deca	da	101
deci	d	10-1
centi	с	10-2
milli	m	10-3
micro	μ	10-6
nano	n	10-9
pico	р	10-12
femto	f	10-15

The value given is the number of places the decimal moves

Please make sure that you go in the correct direction!

900 nm = 900,000,000,000 m

or

900 nm = 0.0000009 m

	Prefix	Abbreviation	Value
	peta	р	1015
	tera	Т	1012
	giga	G	109
	mega	М	106
	kilo	k	10 ³
	hecto	h	102
base	deca	da	101
Dase	deci centi milli micro nano	d	10-1
		с	10-2
		m	10-3 9
		μ	10-6
		n	10-9
	pico	р	10-12
	femto	f	10 ⁻¹⁵

900 nm → 0.0000009 m

900 × 10⁻⁹ m

	Prefix	Abbreviation	Power	
	giga-	G	10 ⁹	
	mega-	М	10 ⁶	
	kilo-	К	10 ³	
3	hecto-	h	3 10 ²	
	deca-	da	10 ¹	ľ
		Base		
1	deci-	d	10-1	
3	centi-	С	10-2	
	milli-	m	10 ⁻³	
	micro-	μ	10-6	
	nano-	n	10 ⁻⁹	

Conversions:

250 g = **0.25** kg

0.00325 kg = <mark>3,250,000</mark> μg

54 mm = **0.000054** km

The Metric System | Try These

Prefix	Abbreviation	Power	
giga-	G	10 ⁹	
mega-	М	106	
kilo-	К	10 ³	
hecto-	h	10 ²	6
deca-	da	10 ¹	
	Base	E E	
deci-	d	10-1	
centi-	С	10-2	6
milli-	m	10 ⁻³	
micro-	μ	10-6	
nano-	n	10 ⁻⁹	

SI prefixes

1000 ⁿ	10 ⁿ	Prefix	Symbol	Short scale	Long scale	Decimal equivalent in SI writing style	
1000 ⁸	10 ²⁴	yotta-	Y	Septillion	Quadrillion	1 000 000 000 000 000 000 000 000	
10007	10 ²¹	zetta-	Z	Sextillion	Trilliard (thousand trillion)	1 000 000 000 000 000 000 000	
1000 ⁶	10 ¹⁸	exa-	E	Quintillion	Trillion	1 000 000 000 000 000 000	
1000 ⁶	10 ¹⁵	peta-	P	Quadrillion	Billiard (thousand billion)	1 000 000 000 000 000	
10004	10 ¹²	tera-	т	Trillion	Billion	1 000 000 000 000	
1000 ³	10 ⁹	giga-	G	Billion	Milliard (thousand million)	1 000 000 000	-
1000 ²	10 ⁶	mega-	м		Million	1 000 000	
10001	10 ³	kilo-	k		Thousand	1 000	
10002/3	10 ²	hecto-	h		Hundred	100	
10001/3	10 ¹	deca-	da		Ten	10	
10000	10 ⁰	(none)	(none)		One	1	
1000-1/3	10-1	deci-	d		Tenth	0.1	
1000-2/3	10-2	centi-	c		Hundredth	0.01	
1000-1	10-3	milli-	m		Thousandth	0.001	_
1000-2	10-6	micro-	μ		Millionth	0.000 001	5
1000-3	10 ⁻⁹	nano-	n	Billionth	Milliardth	0.000 000 001	1
1000-4	10-12	pico-	р	Trillionth	Billionth	0.000 000 000 001	
1000-5	10-15	femto-	f	Quadrillionth	Billiardth	0.000 000 000 000 001	
1000-8	10-18	atto-	a	Quintillionth	Trillionth	0.000 000 000 000 000 001	
1000-7	10-21	zepto-	z	Sextillionth	Trilliardth	0.000 000 000 000 000 000 001	
1000-8	10-24	yocto-	у	Septillionth	Quadrillionth	0.000 000 000 000 000 000 000 001	

There's more...

"What about Instagram?"

Lesson Takeaways

- □ I can describe the difference between quantitative and qualitative observations
- □ I can identify the 7 Fundamental SI units
- □ I can define and give an example of a derived unit
- □ I can represent fractional units with negative exponents
- □ I can convert metric units between prefixes

IB PHYSICS | MOTION

Conversions

Convert the Following:

26.2 miles \rightarrow kilometers

1 Mile = 1.609 Kilometers

$$26.2 \text{ mi} \times \frac{1.609 \text{ km}}{1 \text{ mi}} = 42.2 \text{ km}$$

Conversions with fractions

Convert the Following:

35 mi hr⁻¹ → m s⁻¹

1 Mile = 1609 meters

Conversions with Exponents

How many cm^2 are there in 1 m^2 ?

 $100 \times 100 = 100^2 = 10,000 \text{ cm}^2$

How many cm^3 are there in 1 m^3 ?

 $100 \times 100 \times 100 = 100^3 = 1,000,000 \text{ cm}^2$

Conversions with Exponents

Convert the Following:

 $0.05 \text{ km}^2 \rightarrow \text{m}^2$

$$0.05 \text{ km}^2 \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1000 \text{ m}}{1 \text{ km}} = 50,000 \text{ m}^2$$
$$0.05 \text{ km}^2 \times \left(\frac{1000 \text{ m}}{1 \text{ km}}\right)^2 = 50,000 \text{ m}^2$$

Conversions with Exponents

Convert the Following:

1 meter = 3.28 feet

 $5 \text{ m}^2 \rightarrow \text{ft}^2$ $5 \text{ m}^2 \times \left(\frac{3.28 \text{ ft}}{1 \text{ m}}\right)^2 = 53.8 \text{ ft}^2$

 $5 \text{ m}^3 \rightarrow \text{ft}^3$

$$5 \text{ m}^3 \times \left(\frac{3.28 \text{ ft}}{1 \text{ m}}\right)^3 =$$
 176.4 ft³

Start with the formula and substitute units in for variables

 $v = \frac{d}{t} \qquad \qquad \left[\frac{m}{s}\right] = \frac{[m]}{[s]}$

Is this formula valid?

$$d = at$$
 $[m] = \left[\frac{m}{s^2}\right][s]$ not valid $[m] = \left[\frac{m}{s}\right]$

We can use equations with units that we know to find units that we don't.

 $p = m \times v$

 $= [kg] \left[\frac{m}{s}\right]$

Variable	Unit
Momentum p	kg m s ⁻¹
Mass	Kilogram
m	[kg]
Velocity	Meters per second
v	[ms ⁻¹]

Constants have units too! That's what makes our equation valid

$F = \frac{G}{d^2} \frac{m_1 m_2}{d^2}$	Variable	Unit
$F = \frac{G}{d^2}$	Force F	Newton [N]
Fd^2 [N][m] ²	Mass m₁ and m₂	Kilogram [kg]
$G = \frac{Fd^2}{m_1m_2} = \frac{[N][m]^2}{[kg]^2}$	Distance d	Meter [m]
$=\frac{[N][m]^2}{[kg]^2}$	Universal Gravitation Constant G	N m ² kg ⁻²
L'`6J		

Normalized Scientific Notation

Helpful for very **big** numbers

- $89,000,000 = 8.9 \times 10^7$ or 8.9E7
- $750,000,000,000 = 7.5 \times 10^{11}$ or 7.5E11
- 8,759,000,000 = 8.759 × 10⁹ or 8.759E9

Normalized Scientific Notation

Helpful for very **small** numbers

 $0.00125 = 1.25 \times 10^{-3}$ or 1.25E-3

- $0.000008255 = 8.255 \times 10^{-7}$ or 8.255E-7
- $0.0000082550 = 8.2550 \times 10^{-7}$ or 8.2550E-7

Lesson Takeaways

- I can convert fraction units and exponential units using Dimensional Analysis
- □ I can use dimensional analysis to verify a formula
- I can use dimensional analysis to determine the units for a solution
- I can represent large and small numbers using scientific notation

Displacement Graphs

IB PHYSICS | MOTION

What is Motion?

An object's change in **position** relative to a reference point.

Relative to the earth: Moving 17,500 mph

Relative to the shuttle: Not moving

Distance vs. Displacement

Distance

How far travelled

Displacement

How far from origin

Distance and Displacement in 2D

Map Showing the Distance Between Minnetonka High School - The Cove, Minnetonka and Niagra Falls, Canada

Try this | Distance and Displacement

You walked 5 km East, turned around and walked 2 km West, turned around again and walked another 4 km East. What is your distance? What is your displacement?

Graphing Displacement

You walked 5 km East, turned around and walked 2 km West, turned around again and walked another 4 miles km. What is your distance? What is your displacement?

Stroboscopic Photographs

In a stroboscopic photograph, a new snapshot is captured every _____ seconds and combined to show the motion over a period of time.

Circle the part of the motion where this soccer ball is moving the FASTEST

Circle the part of the motion where this soccer ball is moving the SLOWEST

Stroboscopic Photographs

Which cart do you think has the best chance of reaching the 10-meter location first?

Time	0.0 s	1.0 s	2.0 s	3.0 s
Cart A	0.0 m			
Cart B	2.0 m			
Cart C	3.0 m			

Now which cart do you think has the best chance of reaching the 10-meter location first?

Time	0.0 s	1.0 s	2.0 s	3.0 s
Cart A	0.0 m	4.0 m		
Cart B	2.0 m	4.0 m		
Cart C	3.0 m	4.0 m		

What new information do you have about the carts now that you didn't before?

Now which cart do you think has the best chance of reaching the 10-meter location first?

Time	0.0 s	1.0 s	2.0 s	3. 0 s
Cart A	0.0 m	4.0 m	7.0 m	??
Cart B	2.0 m	4.0 m	6.0 m	??
Cart C	3.0 m	4.0 m	6.0 m	??

What patterns do you see? Can you use these to predict the next position?

It's more than just position, you need multiple frames to see motion

Time	0.0 s	1.0 s	2.0 s	3.0 s
Cart A	0.0 m	4.0 m	7.0 m	9.0 m
Cart B	2.0 m	4.0 m	6.0 m	8.0 m
Cart C	3.0 m	4.0 m	6.0 m	9.0 m

An object not moving

An object moving forward

An object moving backward

Showing Velocity

Speeding Up (moving positive)

Speeding Up (moving negative)

How are these Similar?

Getting faster because the graph is getting steeper (farther spacing)

Slowing Down (moving positive)

Slowing Down (moving negative)

Displacement vs Time Graphs

Which graph(s) represent an object moving in the negative direction?

Which graph(s) represent an object slowing down?

Lesson Takeaways

- I can describe the difference between distance and displacement
- □ I can calculate distance and displacement for 1D motion
- I can plot constant velocity on a displacement vs time graph
- I can plot changing velocity on a displacement vs time graph
- I can use a displacement vs time graph to identify if an object is moving in the positive or negative direction as well as if it is speeding up or slowing down

Velocity Graphs

IB PHYSICS | MOTION

What is...

Speed

The rate of change of position "how fast"

Velocity

Speed with direction

What is a Vector?

A Vector is a quantity that includes both direction and magnitude

Vector vs Scalar

Vector Quantities	Scalar Quantities	
Displacement	Distance	
Velocity	Speed	
Force	Energy	

Can be negative to indicate direction

Only Positive

An object not moving

An object moving forward

An object moving backward

Showing Velocity

Speeding Up (moving positive)

Speeding Up (moving negative)

How are these Similar?

Getting faster because velocity is getting farther from zero

Slowing Down (moving positive)

Slowing Down (moving negative)

Velocity vs Time Graphs

Which graph(s) represent an object moving in the negative direction?

Which graph(s) represent an object slowing down?

What is...

Velocity

change in **position** over time "speed with direction"

Acceleration

change in **velocity** over time

Types of Acceleration

Speeding Up

Slowing Down

Changing Direction

Acceleration is Related to Force

Acceleration | Slowing or Speeding?

When the acceleration is in the same direction as the velocity the object is <u>speeding up</u>

"Foot on the Gas"

When the acceleration is in the **opposite** direction as the velocity the object is **slowing down**

"Foot on the Brake"

Lesson Takeaways

- □ I can describe the difference between speed and velocity
- I can compare the difference between a vector and scalar quantity
- □ I can plot constant velocity on a velocity vs time graph
- □ I can plot changing velocity on a velocity vs time graph
- I can use a velocity vs time graph to identify if an object is moving in the positive or negative direction as well as if it is speeding up or slowing down
- □ I can define acceleration in terms of velocity

Calculating from Graphs

IB PHYSICS | MOTION

Motion Graphs Guide

Calculating Instantaneous Velocity

The power of the slope!

Average Speed and Velocity

Average Speed = $\frac{Total \ Distance}{Total \ Time}$ * Always Positive

Average Velocity = $\frac{Total Displacement}{Total Time}$ * Includes Direction

Calculating Average Speed

Eliud Kipchoge broke the 2-hour marathon (26.2 miles) in October of 2019. Kipchoge finished in 1.99 hours. What was his average speed in mph?

$$v = \frac{d}{t} = \frac{26.2}{1.99} =$$
13.2 mi hr⁻¹

Average vs Instantaneous

An object speeding up (positive)

The power of the slope!

Calculating Displacement

What is the velocity at 4 seconds?

4 m s⁻¹

What is the acceleration from 1 s - 4 s?

Slope = 1 m s^{-2}

What is the displacement after 4 s?

Area = 8 m

What is the velocity at 4 seconds?

-4 m s⁻¹

What is the acceleration from 0 s - 4 s?

Slope = -1 m s^{-2}

What is the displacement after 4 s?

Area = -8 m

What is the velocity at 4 seconds?

4 m s⁻¹

What is the acceleration from 0 s - 4 s?

Slope = 0.5 m s^{-2}

What is the displacement after 4 s?

Area = 12 m

What is the velocity at 3 seconds?

-2 m s⁻¹

What is the acceleration from 1 s - 3 s?

Slope = -2 m s^{-2}

What is the displacement after 3 s?

(2) + (1) + (-1) = Area = 2 m

Use the graphs to tell you MORE!

Displacement vs Time

Velocity

Slope

Slope

Displacement -

Velocity vs Time

Velocity vs Time

Area Under Curve

Acceleration

Lesson Takeaways

- □ I can use an equation to calculate average speed/velocity
- I can calculate instantaneous velocity using the slope of a displacement vs time graph
- □ I can calculate instantaneous acceleration using the slope of a velocity vs time graph
- I can calculate overall displacement using the area of a velocity vs time graph

The Kinematic Equations

IB PHYSICS | MOTION

Motion Variables

Whenever we are describing the motion of an accelerating object, there are five variables that we need to take into account

Note: The variables used in IB Physics vary slightly from other nomenclature standards

Calculating Acceleration

Think about this unit...

What is the acceleration of a car that accelerates from 15 m s⁻¹ to 35 m s⁻¹ in 10 seconds?

u	15 ms ⁻¹
v	35 ms ⁻¹
a	?
t	10 s

$$a = \frac{v - u}{t} = \frac{35 - 15}{10}$$
$$a = 2 \text{ ms}^{-2}$$

Find the average acceleration of a northbound train that slows down from 12 m s⁻¹ to a complete stop in 8 sec **Tip: You can get a negative value!*

u	12 ms ⁻¹
v	0 ms ⁻¹
a	?
t	8 s

$$a = \frac{v - u}{t} = \frac{0 - 12}{8}$$
$$a = -1.5 \text{ ms}^{-2}$$

Solve for v

Physics Data Booklet

Sub-topic 2.1 – Motion v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$ $s = \frac{(v+u)t}{2}$

How far have I gone?

Use the graphs to tell you MORE!

Displacement vs Time Velocity

Displacement

Velocity vs Time

Velocity vs Time

rea Under Curve

Acceleration

Slope

How far have I gone?

Physics Data Booklet

Sub-topic 2.1 – Motion v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$ $s = \frac{(v + u)t}{2}$

What if I don't know v?

$$s = \frac{(v+u)t}{2} \qquad v = u + at$$

$$S = \frac{(u+at+u)t}{2} = \frac{(2u+at)t}{2}$$

$$S = \frac{2ut + at^2}{2} \longrightarrow S = ut + \frac{1}{2}at^2$$

Physics Data Booklet

Sub-topic 2.1 – Motion v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$ $s = \frac{(v+u)t}{2}$

One more equation

$v^2 = u^2 + 2as$

Equations

	т	т s ⁻¹	т s ⁻¹	т s ⁻²	S
v = u + at		u	v	a	t
$s = ut + \frac{1}{2}at^2$	S	u		a	t
$v^2 = u^2 + 2as$	S	u	v	а	
$s = \frac{(v+u)t}{2}$	S	u	v		t

You speed up with a uniform acceleration from 0 m/s to 30 m/s in 5 seconds. How far have you gone?

v = u + at		u	v	а	t
$s = ut + \frac{1}{2}at^2$	S	и		а	t
$v^2 = u^2 + 2as$	S	и	ν	а	
$s = \frac{(v+u)t}{2}$	S	и	v		t

 $s = \frac{(30+0)(5)}{2} = 75 \text{ m}$

S	?
u	0 m s ⁻¹
ν	30 m s ⁻¹
a	
t	5 s

If a plane on a runway is accelerating at 4.8 m s^{-2} for 15 seconds before taking off, how long should the runway be?

$$s = ut + \frac{1}{2}at^{2}$$

= (0)(15) + $\frac{1}{2}$ (4.8)(15)²
 $s = 540$ m

S	?
u	0 m s ⁻¹
v	
а	4.8 m s ⁻²
t	15 s

A driver slams on the brakes and skids for 3 seconds before coming to a stop. You go and measure that the skid marks show a deceleration over 9 m. What was the initial speed of the car?

$$s = \frac{(v+u)t}{2}$$
$$u = \frac{2s}{t} - v = \frac{2(9)}{(3)} - 0$$
$$u = 6 \text{ m s}^{-1}$$

S	9 m
u	?
υ	0 m s ⁻¹
a	
t	3 s

Lesson Takeaways

- □ I can identify the 5 primary variables of motion
- I can identify the proper kinematic equation to use for a problem that is presented
- □ I can rearrange to solve for the unknown variable
- □ I can calculate for an unknown

Free Fall

IB PHYSICS | MOTION

What is Free Fall?

The only force acting on the object is gravity

No Air Resistance

Acceleration due to Gravity

-9.81 m s^{-2}

What if you drop something?

What do you know? S 0 m s⁻¹ \mathcal{U} \bigcirc \mathcal{V} -9.81 m s⁻² a t

What if you throw something up?

•••				What do you know?			
a st Half	S		Half	S			
st •	u		2nd H	и	0 m s ⁻¹		
	υ	0 m s ⁻¹		υ			
	a	-9.81 m s ⁻²		а	-9.81 m s ⁻²		
\land	t			t			

What if you throw something down?

 \bigcirc

What do you know?

Reminder of our Equations

Units	т	т s ⁻¹	т s ⁻¹	т s ⁻²	S
v = u + at		и	v	a	t
$s = ut + \frac{1}{2}at^2$	S	и		a	t
$v^2 = u^2 + 2as$	S	и	v	а	
$s = \frac{(v+u)t}{2}$	S	и	v		t

Dropping a marble

If you drop a marble off of the Empire State Building (~380 m), how fast will it be going once it reaches the ground?

 $v^2 = u^2 + 2as$

$$v = \sqrt{0^2 + 2(-9.81)(3-3)}$$

$$v = -86.3 \text{ m s}^{-1}$$

*The negative indicates a downward direction

S	-380 m		
и	0 m s ⁻¹		
v	?		
a	-9.81 m s ⁻²		
t			

Shooting a Basket

0 m s⁻¹ What is the vertical velocity of a basketball required to reach the rim of the basketball hoop? (~3.0 m high)

0

3 m

 $v^2 = u^2 + 2as$

 $0^2 = u^2 + 2(-9.81)(3)$

$$u = 7.67 \text{ m s}^{-1}$$

S	3 m
u	?
v	0 m s ⁻¹
а	-9.81 m s ⁻²
t	

Flipping a Coin

Lesson Takeaways

- □ I can identify the constant acceleration due to gravity neglecting air resistance
- I can interpret a free fall problem to identify hidden values and understand when to look at only half of the problem
- I can use the kinematic equations to solve a free fall problems

Projectile Motion

IB PHYSICS | MOTION

Reminder of our Equations

Units	т	т s ⁻¹	т s ⁻¹	т s ⁻²	S
v = u + at		и	v	a	t
$s = ut + \frac{1}{2}at^2$	S	и		a	t
$v^2 = u^2 + 2as$	S	и	v	а	
$s = \frac{(v+u)t}{2}$	S	u	v		t

Dropping the Ball

S

How much time will it take this ball to hit the ground when dropped? The impact velocity?

$$s = \mu t + \frac{1}{2}at^{2}$$

-25 = $\frac{1}{2}(-9.81)t^{2}$ $t = 2.26$

$$v^{2} = \sqrt{2} + 2as$$

 $v = \sqrt{2as} = \sqrt{2(-9.81)(-25)}$
 $v = -22.2 \text{ m s}^{-1}$

25 m

S	-25 m
u	0 m s ⁻¹
v	?
a	-9.81 m s ⁻²
t	?

Air Time - Comparison

Which ball will have more air time?

The balls hit the ground at EXACTLY the same time

Air Time - Comparison

Constant Velocity

Horizontal Projectile

One Dimensional Motion

Vertical Accelerating Horizontal **Constant Velocity** [v = d/t]

Horizontal Projectile

Two-Dimensional Projectile

Which one lands first??

Which one lands first??

Lesson Takeaways

- □ I can compare the motion of an object dropped from rest and an object with an initial horizontal velocity
- I can calculate the air time and speed for a horizontal projectile
- I can describe how the vertical and horizontal components are independent from each other for a projectile's motion
- □ I can compare the air time for two projectiles given their trajectories.