MOTION

IB PHYSICS | COMPLETED NOTES

Units

IB PHYSICS | MOTION

Two Types of Observations

Provide some examples of each

Quantitative
"How Many" / "How Much" Numerical

Qualitative
Description

Measurement

How can you quantify a measurement?

Systems and Units

Fundamental S.I. Units:

$\left\{\begin{array}{l|c|c|}\hline \text { Length } & \text { Meter } & \mathrm{m} \\ \hline \text { Mass } & \text { Kilogram } & \mathrm{kg} \\ \hline \text { Time } & \text { Second } & \mathrm{s} \\ \hline \text { Electric Current } & \text { Ampere (amp) } & \mathrm{A} \\ \hline \text { Temperature } & \text { Kelvin } & \mathrm{K} \\ \hline \text { Amount of Substance } & \text { Mole } & \mathrm{mol} \\ \hline \text { Luminous Intensity } & \text { Candela } & \mathrm{cd} \\ \hline\end{array}\right.$

Units are Arbitrary

1790 - The length of a pendulum that swings half of its maximum distance in one second

1795 - The length of an official bar of brass fabricated to be exactly one meter as determined in 1791

1889 - The distance
between two lines on an official bar of platinumiridium alloy, measured at $0^{\circ} \mathrm{C}$

1791 - The length of one ten-millionth of the distance between the North Pole and the equator

1799 - The length of an official bar of platinum, measured from the brass bar and stored at the French National archives

1983 - The length traveled
by light in a vacuum during $1 / 299,792,458$ of a second

What's 'the standard'?

All of our base SI units are grounded in some "standard" that helps maintain consistency.

Some of these units even reference each other...

Definition of the Second

12
The "second" is defined as the interval required for $9,192,631,770$ vibrations of the cesium-133 atom measured via an atomic beam clock

Primary and Secondary Colors

Primary Colors

Secondary Colors

Fundamental vs Derived

Fundamental

 S.I. Units| Length | m |
| :---: | :---: |
| Mass | kg |
| Time | s |

Derived Units

Velocity:

$$
m / s
$$

Acceleration:

$$
m /_{S^{2}}=m / s /_{S}
$$

Force:

$$
N=k g \times m / s^{2}
$$

Welcome to IB Land!

Since this course is International all of the units must be in the "European" format rather than the "American" format This means that instead of writing units with a fraction slash, we must use negative exponents

$7 \mathrm{~m} / \mathrm{s}$	$\mathrm{m} \mathrm{s}^{-1}$	$6.67 \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$	$\mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$9.81 \mathrm{~m} / \mathrm{s}^{2}$	$\mathrm{~m} \mathrm{~s}^{-2}$	$2.2 \frac{\mathrm{~J}}{\mathrm{~K}}$	J K
-1			
$87 \mathrm{~g} / \mathrm{cm}^{3}$	$\mathrm{~g} \mathrm{~cm}^{-3}$	$8.31 \frac{\mathrm{~J}}{\mathrm{~K} \times \mathrm{mol}}$	$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$

The Metric System

	Prefix	Abbreviation	Value
V	peta	P	10^{15}
¢	tera	T	10^{12}
$\stackrel{\Gamma}{0}$	giga	G	10^{9}
y	mega	M	10^{6}
	kilo	k	10^{3}
\bigcirc	hecto	h	10^{2}
$\xrightarrow{(1)}$	deca	da	10^{1}
	deci	d	10^{-1}
은	centi	c	10^{-2}
\geq	milli	m	10^{-3}
(1)	micro	μ	10^{-6}
\bigcirc	nano	n	10^{-9}
$\frac{1}{10}$	pico	p	10^{-12}
*	femto	f	10^{-15}

The Metric System

Prefix	Abbreviation	Value
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	m	10^{-6}
nano	p	10^{-9}
femto	10^{-12}	

The value given is the number of places the decimal moves

Please make sure that you go in the correct direction!
$900 \mathrm{~nm}=900,000,000,000 \mathrm{~m}$
or
$900 \mathrm{~nm}=0.0000009 \mathrm{~m}$

The Metric System

Prefix	Abbreviation	Value
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}

$900 \mathrm{~nm} \rightarrow \underline{0.0000009} \mathrm{~m}$

$900 \times 10^{-9} \mathrm{~m}$

The Metric System

Prefix	Abbreviation	Power	Conversions:
giga-	G	10^{9}	$250 \mathrm{~g}=0.25 \mathrm{~kg}$
mega-	M	10^{6}	
kilo-	K	10^{3}	
$3\left(\begin{array}{l} \text { hecto- } \\ \text { deca- } \end{array}\right.$	$\begin{gathered} h \\ d a \end{gathered}$	$\left.\begin{array}{l} 10^{2} \\ 10^{1} \end{array}\right)^{3}$	$0.00325 \mathrm{~kg}=3,250,000 \mu \mathrm{~g}$
deci-	$\begin{gathered} \text { Base } \\ \text { d } \end{gathered}$		
3 centi-	c	10^{-2}	
milli-	m	10^{-3}	$54 \mathrm{~mm}=0.000054 \mathrm{~km}$
micro-	μ	10^{-6}	
nano-	n	10^{-9}	

The Metric System | Try These

Prefix	Abbreviation	Power	$65 \mu \mathrm{C}=0.000065 \mathrm{C}$
giga-	G	10^{9}	
mega-	M	10^{6}	6
kilo-	K	10^{3}	
hecto-	h	10^{2}	
deca-	da	10^{1}	$12 \mathrm{MW}=\underline{12,000,000} \mathrm{~W}$
	Base	\%	
deci-	d	10^{-1}	
centi-	c	10^{-2}	
milli-	m	10^{-3}	
micro-	μ	10^{-6}	
nano-	n	10^{-9}	

The Metric System

SI prefixes

1000^{n}	10^{n}	Prefix	Symbol	Short scale	Long scale	Decimal equivalent in SI writing style
1000^{8}	10^{24}	yotta-	Y	Septillion	Quadrillion	1000000000000000000000000
$1000{ }^{7}$	10^{21}	zetta-	z	Sextillion	Trilliard (thousand trillion)	1000000000000000000000
1000^{6}	10^{18}	exa-	E	Quintillion	Trillion	1000000000000000000
1000^{5}	10^{15}	peta-	P	Quadrillion	Billiard (thousand billion)	1000000000000000
1000^{4}	10^{12}	tera-	T	Trillion	Billion	1000000000000
1000^{3}	10^{9}	giga-	G	Billion	Milliard (thousand million)	1000000000
1000^{2}	10^{6}	mega-	M		Million	1000000
$1000{ }^{1}$	10^{3}	kilo-	k		Thousand	1000
$1000{ }^{2 / 3}$	10^{2}	hecto-	h		Hundred	100
$1000{ }^{1 / 3}$	10^{1}	deca-	da		Ten	10
1000°	10°	(none)	(none)		One	1
$1000^{-1 / 3}$	10^{-1}	deci-	d		Tenth	0.1
$1000^{-2 / 3}$	10^{-2}	centi-	c		Hundredth	0.01
1000^{-1}	10^{-3}	milli-	m		Thousandth	0.001
1000^{-2}	10^{-6}	micro-	μ		Millionth	0.000001
1000^{-3}	10^{-9}	nano-	n	Billionth	Milliardth	0.000000001
1000^{-4}	10^{-12}	pico-	P	Trillionth	Billionth	0.000000000001
1000^{-5}	10^{-15}	femto-	f	Quadrillionth	Billiardth	0.000000000000001
1000^{-6}	10^{-18}	atto-	a	Quintillionth	Trillionth	0.000000000000000001
1000^{-7}	10^{-21}	zepto-	z	Sextillionth	Trilliardh	0.000000000000000000001
1000^{-8}	10^{-24}	yocto-	y	Septillionth	Quadrillionth	0.000000000000000000000001

There's more...

Lesson Takeaways

\square I can describe the difference between quantitative and qualitative observations
\square I can identify the 7 Fundamental SI units
\square I can define and give an example of a derived unit
I I can represent fractional units with negative exponents
\square I can convert metric units between prefixes

Dimensional Analysis

IB PHYSICS | MOTION

Conversions

Convert the Following:
26.2 miles \rightarrow kilometers

1 Mile = 1.609 Kilometers
$26.2 \mathrm{mil} \times \frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}=42.2 \mathrm{~km}$

Conversions with fractions

Convert the Following:

$35 \mathrm{mi} \mathrm{hr}^{-1} \rightarrow \mathrm{~m} \mathrm{~s}^{-1}$

$$
\frac{35 \mathrm{mil}}{1 \mathrm{bi}} \times \frac{1609 \mathrm{~m}}{1 \mathrm{mi}} \times \frac{1 \mathrm{~b}}{60 \mathrm{miit}} \times \frac{1 \mathrm{mit}}{60 \mathrm{~s}}=15.6 \mathrm{~m} \mathrm{~s}^{-1}
$$

Conversions with Exponents

How many cm^{2} are there in $1 \mathrm{~m}^{2}$?

$$
100 \times 100=100^{2}=\mathbf{1 0}, \mathbf{0 0 0} \mathrm{cm}^{2}
$$

How many cm^{3} are there in $1 \mathrm{~m}^{3}$?

$100 \times 100 \times 100=100^{3}=\mathbf{1}, \mathbf{0 0 0}, \mathbf{0 0 0} \mathbf{c m}^{2}$

Conversions with Exponents

Convert the Following:
$0.05 \mathrm{~km}^{2} \rightarrow \mathrm{~m}^{2}$
$0.05 \mathrm{~km}^{2} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=50,000 \mathrm{~m}^{2}$
$0.05 \mathrm{~km}^{2} \times\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}=50,000 \mathrm{~m}^{2}$

Conversions with Exponents

Convert the Following:

1 meter $=3.28$ feet

$5 \mathrm{~m}^{2} \rightarrow \mathrm{ft}^{2}$

$$
5 \mathrm{~m}^{2} \times\left(\frac{3.28 \mathrm{ft}}{1 \mathrm{~m}}\right)^{2}=53.8 \mathrm{ft}^{2}
$$

$5 \mathrm{~m}^{3} \rightarrow \mathrm{ft}^{3}$

$$
5 \mathrm{~m}^{3} \times\left(\frac{3.28 \mathrm{ft}}{1 \mathrm{~m}}\right)^{3}=\mathbf{1 7 6 . 4 \mathrm { ft } ^ { 3 }}
$$

Dimensional Analysis

Start with the formula and substitute units in for variables

$$
v=\frac{d}{t} \quad\left[\frac{m}{s}\right]=\frac{[m]}{[s]}
$$

Is this formula valid?

$$
d=\text { at } \quad[m]=\left[\frac{m}{s^{2}}\right][s]
$$

Dimensional Analysis

We can use equations with units that we know to find units that we don't.

$$
\begin{aligned}
p & =m \times v \\
& =[\mathrm{kg}]\left[\frac{\mathrm{m}}{\mathrm{~s}}\right]
\end{aligned}
$$

Variable	Unit
Momentum \mathbf{p}	Kg m s
Mass	
\mathbf{m}	Kilogram $[\mathrm{kg}]$
Velocity \mathbf{v}	Meters per second $\left[\mathrm{ms}^{-1}\right]$

Dimensional Analysis

Constants have units too! That's what makes our equation valid

$$
\begin{array}{r}
F=G \frac{m_{1} m_{2}}{d^{2}} \\
G=\frac{F d^{2}}{m_{1} m_{2}}=\frac{[\mathrm{N}][\mathrm{m}]^{2}}{[\mathrm{~kg}]^{2}} \\
=\frac{[\mathrm{N}][\mathrm{m}]^{2}}{[\mathrm{~kg}]^{2}}
\end{array}
$$

Variable

Force	Newton
\mathbf{F}	
Mass m_{1} and $\mathrm{m}_{\mathbf{2}}$	Kilogram
$[\mathrm{kg}]$	

Normalized Scientific Notation

Helpful for very big numbers

$89,000,000=8.9 \times 10^{7}$ or 8.9 E 7
$750,000,000,000=7.5 \times 10^{11}$ or 7.5 E 11
$8,759,000,000=8.759 \times 10^{9}$ or 8.759 E 9

Normalized Scientific Notation

Helpful for very small numbers

$$
0.00125=\quad 1.25 \times 10^{-3} \text { or } 1.25 \mathrm{E}-3
$$

$0.0000008255=8.255 \times 10^{-7}$ or $8.255 \mathrm{E}-7$
$0.00000082550=8.2550 \times 10^{-7}$ or $8.2550 \mathrm{E}-7$

Lesson Takeaways

\square I can convert fraction units and exponential units using Dimensional Analysis
\square I can use dimensional analysis to verify a formula
\square I can use dimensional analysis to determine the units for a solution

I can represent large and small numbers using scientific notation

Displacement Graphs

IB PHYSICS | MOTION

What is Motion?

An object's change in position relative to a reference point.

Relative to the earth:
Moving 17,500 mph
Relative to the shuttle:
Not moving

Distance vs. Displacement

Distance

How far travelled

Displacement
How far from origin

Distance and Displacement in 2D

This road journey will take $\mathbf{2 1}$ Hours, 11 Minutes
You can link to this result : How Far is it Between Minnetonka High School - The Cove, Minnetonka and Niagra Falls, Canada -minnetonka-and-niagra-falls_-ca

Map Showing the Distance Between Minnetonka High School - The Cove, Minnetonka and Niagra Falls, Canada

Try this | Distance and Displacement

You walked 5 km East, turned around and walked 2 km West, turned around again and walked another 4 km East. What is your distance? What is your displacement?

$5+2+4$ Distance

Displacement

11 km
 7 km

Graphing Displacement

You walked 5 km East, turned around and walked 2 km West, turned around again and walked another 4 miles km . What is your distance? What is your displacement?

Stroboscopic Photographs

In a stroboscopic photograph, a new snapshot is captured every \qquad seconds and combined to show the motion over a period of time.
(Circle)the part of the motion where this soccer ball is moving the FASTEST
(Circle)the part of the motion where this soccer ball is moving the SLOWEST

Stroboscopic Photographs

Predict the Motion...

Which cart do you think has the best chance of reaching the 10-meter location first?

Time	0.0 s	1.0 s	2.0 s	3.0 s
Cart A	0.0 m			
Cart B	2.0 m			
Cart C	3.0 m			

Predict the Motion...

Now which cart do you think has the best chance of reaching the 10-meter location first?

Time	0.0 s	1.0 s	2.0 s	3.0 s
Cart A	0.0 m	4.0 m		
Cart B	2.0 m	4.0 m		
Cart C	3.0 m	4.0 m		

What new information do you have about the carts now that you didn't before?

Predict the Motion...

Now which cart do you think has the best chance of reaching the 10-meter location first?

Time	0.0 s	1.0 s	2.0 s	3.0 s
Cart A	0.0 m	4.0 m	7.0 m	$? ?$
Cart B	2.0 m	4.0 m	6.0 m	$? ?$
Cart C	3.0 m	4.0 m	6.0 m	$? ?$

What patterns do you see? Can you use these to predict the next position?

Predict the Motion...

It's more than just position, you need multiple frames to see motion

Time	0.0 s	1.0 s	2.0 s	3.0 s	
Cart A	0.0 m	4.0 m	7.0 m	9.0 m	
Cart B	2.0 m	4.0 m	6.0 m	8.0 m	
Cart C	3.0 m	4.0 m	6.0 m	9.0 m	

An object not moving

An object moving forward

An object moving backward

Showing Velocity

Speeding Up (moving positive)

Speeding Up (moving negative)

How are these Similar?

Getting faster because the graph is getting steeper (farther spacing)

Slowing Down (moving positive)

Slowing Down (moving negative)

Displacement vs Time Graphs

Which graph(s) represent an object moving in the negative direction?

Which graph(s) represent an object slowing down?

D

Lesson Takeaways

\square I can describe the difference between distance and displacement
\square I can calculate distance and displacement for 1D motion
\square I can plot constant velocity on a displacement vs time graph
\square I can plot changing velocity on a displacement vs time graph
\square I can use a displacement vs time graph to identify if an object is moving in the positive or negative direction as well as if it is speeding up or slowing down

Velocity Graphs
IB PHYSICS | MOTION

What is...

Speed

The rate of change of position "how fast"

Velocity

Speed with direction

What is a Vector?

A Vector is a quantity that includes both direction and magnitude

Vector vs Scalar

Vector Quantities

Scalar Quantities

Displacement
Velocity
Distance
Speed
Force
Energy
Can be negative to indicate direction

Only Positive

An object not moving

An object moving forward

An object moving backward

Showing Velocity

Speeding Up (moving positive)

Speeding Up (moving negative)

How are these Similar?

v

Getting faster because velocity is getting farther from zero

Slowing Down (moving positive)

Slowing Down (moving negative)

Velocity vs Time Graphs

Which graph(s) represent an object moving in the negative direction?

Which graph(s) represent an object slowing down?

What is...

Velocity

change in position over time "speed with direction"

Acceleration
change in velocity over time

Types of Acceleration

Speeding Up

Slowing Down

Changing Direction

Acceleration is Related to Force

Acceleration | Slowing or Speeding?

When the acceleration is in the same direction as the velocity the object is speeding up
"Foot on the Gas"

When the acceleration is in the opposite direction as the velocity the object is slowing down
"Foot on the Brake"

Lesson Takeaways

\square I can describe the difference between speed and velocity
\square I can compare the difference between a vector and scalar quantity
\square I can plot constant velocity on a velocity vs time graph
I can plot changing velocity on a velocity vs time graph
\square I can use a velocity vs time graph to identify if an object is moving in the positive or negative direction as well as if it is speeding up or slowing down
\square I can define acceleration in terms of velocity

Calculating from Graphs

IB PHYSICS | MOTION

Motion Graphs Guide

Calculating Instantaneous Velocity

The power of the slope!

$\frac{0}{\sim}$

Average Speed and Velocity

Total Distance Average Speed $=\frac{\text { Total Time }}{}$ * Always Positive

Total Displacement

Average Velocity = Total Time * Includes Direction

Calculating Average Speed

Eliud Kipchoge broke the 2-hour marathon (26.2 miles) in October of 2019. Kipchoge finished in 1.99 hours. What was his average speed in mph?

Average vs Instantaneous

An object speeding up (positive)

3
3
2

The power of the slope!

$\frac{0}{\sim}$

Calculating Displacement

Information from a V vs T graph

What is the velocity at 4 seconds?

$$
4 \mathrm{~m} \mathrm{~s}^{-1}
$$

What is the acceleration from $1 s-4 s$?

$$
\text { Slope }=1 \mathrm{~m} \mathrm{~s}^{-2}
$$

What is the displacement after 4 s ?

$$
\text { Area = } 8 \text { m }
$$

Information from a V vs T graph

What is the velocity at 4 seconds?

$$
-4 \mathrm{~m} \mathrm{~s}^{-1}
$$

What is the acceleration from $0 s-4 s$?

$$
\text { Slope }=-1 \mathrm{~m} \mathrm{~s}^{-2}
$$

What is the displacement after 4 s ?

$$
\text { Area }=-8 \mathrm{~m}
$$

Information from a V vs T graph

What is the velocity at 4 seconds?

$$
4 \mathrm{~m} \mathrm{~s}^{-1}
$$

What is the acceleration from $0 s-4 s$?

$$
\text { Slope }=0.5 \mathrm{~m} \mathrm{~s}^{-2}
$$

What is the displacement after 4 s ?

$$
\text { Area = } 12 \text { m }
$$

Information from a V vs T graph

What is the velocity at 3 seconds?

$$
-2 \mathrm{~m} \mathrm{~s}^{-1}
$$

What is the acceleration from $1 s-3 s$?

$$
\text { Slope }=-2 \mathrm{~m} \mathrm{~s}^{-2}
$$

What is the displacement after 3 s ?

$$
(2)+(1)+(-1)=\text { Area }=2 \mathrm{~m}
$$

Use the graphs to tell you MORE!

© Displacement vs Time

은 Velocity
Displacement

Velocity vs Time

Lesson Takeaways

\square I can use an equation to calculate average speed/velocity
\square I can calculate instantaneous velocity using the slope of a displacement vs time graph

I can calculate instantaneous acceleration using the slope of a velocity vs time graph
\square I can calculate overall displacement using the area of a velocity vs time graph

The Kinematic Equations

IB PHYSICS | MOTION

Motion Variables

Displacement	Initial Velocity	Final Velocity	Acceleration	Time

Whenever we are describing the motion of an accelerating object, there are five variables that we need to take into account

Note: The variables used in IB Physics vary slightly from other nomenclature standards

Calculating Acceleration

$$
\text { acceleration }=\frac{\text { final velocity }- \text { initial velocity }}{\text { change in time }}
$$

$$
\mathrm{ms}^{-1}-\mathrm{ms}^{-1}
$$

Think about this unit...

Try This | 1

What is the acceleration of a car that accelerates from $15 \mathrm{~m} \mathrm{~s}^{-1}$ to $35 \mathrm{~m} \mathrm{~s}^{-1}$ in 10 seconds?

u	$15 \mathrm{~ms}^{-1}$
v	$35 \mathrm{~ms}^{-1}$
a	$?$
t	10 s

$$
\begin{aligned}
& \frac{v-u}{t}=\frac{35-15}{10} \\
& a=\mathbf{2} \mathbf{m s}^{\mathbf{- 2}}
\end{aligned}
$$

Try This | 2

Find the average acceleration of a northbound train that slows down from $12 \mathrm{~m} \mathrm{~s}^{-1}$ to a complete stop in 8 sec *Tip: You can get a negative value!

u	$12 \mathrm{~ms}^{-1}$
v	$0 \mathrm{~ms}^{-1}$
a	$?$
t	8 s

$$
\begin{array}{r}
a=\frac{v-u}{t}=\frac{0-12}{8} \\
a=-1.5 \mathbf{m s}^{-2}
\end{array}
$$

Solve for v

$$
a=\frac{v-u}{t}
$$

Physics Data Booklet

$$
\begin{aligned}
& \text { Sub-topic } 2.1-\text { Motion } \\
& \hline v=u+a t \\
& s=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& s=\frac{(v+u) t}{2}
\end{aligned}
$$

How far have I gone?

Use the graphs to tell you MORE!

© Displacement vs Time

Velocity
Displacement

Acceleration

How far have I gone?

Physics Data Booklet

$$
\begin{aligned}
& \text { Sub-topic } 2.1-\text { Motion } \\
& \hline v=u+a t \\
& s=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& s=\frac{(v+u) t}{2}
\end{aligned}
$$

What if I don't know v?

$$
s=\frac{(v+u) t}{2}
$$

$v=u+a t$

$$
s=\frac{(u+a t+u) t}{2}=\frac{(2 u+a t) t}{2}
$$

$$
s=\frac{2 u t+a t^{2}}{2} \longrightarrow s=u t+\frac{1}{2} a t^{2}
$$

Physics Data Booklet

$$
\begin{aligned}
& \text { Sub-topic } 2.1-\text { Motion } \\
& \hline v=u+a t \\
& s=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& s=\frac{(v+u) t}{2}
\end{aligned}
$$

One more equation

$$
v^{2}=u^{2}+2 a s
$$

Equations

	m	$m s^{-1}$	$m s^{-1}$	$m s^{-2}$	s
$v=u+a t$		u	v	a	t
$s=u t+\frac{1}{2} a t^{2}$	s	u		a	t
$v^{2}=u^{2}+2 a s$	s	u	v	a	
$s=\frac{(v+u) t}{2}$	s	u	v		t

Try This | 3

You speed up with a uniform acceleration from $0 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$ in 5 seconds. How far have you gone?

$v=u+a t$		u	v	a	t
$s=u t+\frac{1}{2} a t^{2}$	s	u		a	t
$v^{2}=u^{2}+2 a s$	s	u	v	a	
$s=\frac{(v+u) t}{2}$	s	u	v		t

$s=\frac{(30+0)(5)}{2}=75 \mathrm{~m}$

s	$?$
u	$0 \mathrm{~m} \mathrm{~s}^{-1}$
v	$30 \mathrm{~m} \mathrm{~s}^{-1}$
a	-----
t	5 s

Try This $\mid 4$

If a plane on a runway is accelerating at $4.8 \mathrm{~m} \mathrm{~s}^{-2}$ for 15 seconds before taking off, how long should the runway be?
$s=u t+\frac{1}{2} a t^{2}$
$=(0)(15)+\frac{1}{2}(4.8)(15)^{2}$

$$
s=540 \mathrm{~m}
$$

Try This | 5

A driver slams on the brakes and skids for 3 seconds before coming to a stop. You go and measure that the skid marks show a deceleration over 9 m . What was the initial speed of the car?

$$
s=\frac{(v+u) t}{2}
$$

$$
u=\frac{2 s}{t}-v=\frac{2(9)}{(3)}-0
$$

$$
u=6 \mathrm{~ms}^{-1}
$$

s	9 m
u	$?$
v	$0 \mathrm{~m} \mathrm{~s}^{-1}$
a	----
t	3 s

Lesson Takeaways

\square I can identify the 5 primary variables of motion
\square I can identify the proper kinematic equation to use for a problem that is presented
\square I can rearrange to solve for the unknown variable
\square I can calculate for an unknown

Free Fall

IB PHYSICS | MOTION

What is Free Fall?

The only force acting on the object is gravity

> *No Air Resistance*

Acceleration due to Gravity

$-9.81 \mathrm{~m} \mathrm{~s}^{-2}$

negative

What if you drop something?

What do you know?

s	
u	$0 \mathrm{~m} \mathrm{~s}^{-1}$
v	
a	$-9.81 \mathrm{~m} \mathrm{~s}^{-2}$
t	

What if you throw something up?

$0 \mathrm{~m} \mathrm{~s}^{-1}$
What do you know?

$\frac{\pi}{0}$	S	
む	u	
	v	$0 \mathrm{~m} \mathrm{~s}^{-1}$
	a	-9.81 $\mathrm{m} \mathrm{s}^{-2}$
	t	

\cdots	S	
$\stackrel{\square}{C}$	u	$0 \mathrm{~m} \mathrm{~s}^{-1}$
	v	
	a	$-9.81 \mathrm{~m} \mathrm{~s}^{-2}$
	t	

What if you throw something down?

Reminder of our Equations

Units	m	$m s^{-1}$	$\mathrm{~ms}^{-1}$	$m s^{-2}$	s
$v=u+a t$		u	v	a	t
$s=u t+\frac{1}{2} a t^{2}$	s	u		a	t
$v^{2}=u^{2}+2 a s$	s	u	v	a	
$s=\frac{(v+u) t}{2}$	s	u	v		t

Dropping a marble

If you drop a marble off of the Empire
State Building ($\sim 380 \mathrm{~m}$), how fast will it be going once it reaches the ground?

$$
v^{2}=u^{2}+2 a s
$$

$v=\sqrt{\left.0^{2}+2(-9.81)(3888) 0\right)}$

$$
v=-86.3 \mathrm{~m} \mathrm{~s}^{-1}
$$

*The negative indicates a downward direction

s	-380 m
u	$0 \mathrm{~m} \mathrm{~s}^{-1}$
v	$?$
a	$-9.81 \mathrm{~m} \mathrm{~s}^{-2}$
t	---

Shooting a Basket

$0 \mathrm{~m} \mathrm{~s}^{-1}$
$\stackrel{-}{\bullet}$
。
What is the vertical velocity of a basketball required to reach the rim of the basketball hoop?
($\sim 3.0 \mathrm{~m}$ high)

$$
v^{2}=u^{2}+2 a s
$$

$$
0^{2}=u^{2}+2(-9.81)(3)
$$

$$
u=7.67 \mathrm{~m} \mathrm{~s}^{-1}
$$

Flipping a Coin

$0 \mathrm{~m} \mathrm{~s}^{-1}$ You flip a coin and catch it. It is in the air for A a total of 0.6 seconds. How high did it go?

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& s=\frac{1}{2}(-9.81)(0.3)^{2} \\
& s=0.441 \mathrm{~m}
\end{aligned}
$$

s	$?$
u	$0 \mathrm{~m} \mathrm{~s}^{-1}$
v	---
a	$-9.81 \mathrm{~m} \mathrm{~s}^{-2}$
t	0.3 s

Lesson Takeaways

\square I can identify the constant acceleration due to gravity neglecting air resistance
\square I can interpret a free fall problem to identify hidden values and understand when to look at only half of the problem
\square I can use the kinematic equations to solve a free fall problems

Projectile Motion

IB PHYSICS | MOTION

Reminder of our Equations

Units	m	$m s^{-1}$	$\mathrm{~ms}^{-1}$	$m s^{-2}$	s
$v=u+a t$		u	v	a	t
$s=u t+\frac{1}{2} a t^{2}$	s	u		a	t
$v^{2}=u^{2}+2 a s$	s	u	v	a	
$s=\frac{(v+u) t}{2}$	s	u	v		t

Dropping the Ball

How much time will it take this ball to hit the ground when dropped? The impact velocity?

s	-25 m
u	$0 \mathrm{~m} \mathrm{~s}^{-1}$
v	$?$
a	$-9.81 \mathrm{~m} \mathrm{~s}^{-2}$
t	$?$

Air Time - Comparison

The balls hit the ground at EXACTLY the same time

Air Time - Comparison

Constant Velocity

Horizontal Projectile

One Dimensional Motion

Vertical Accelerating

Horizontal
 Constant Velocity
 $$
[v=d / t]
$$

Two-Dimensional Projectile

Which one lands first??

Which one lands first??

Lesson Takeaways

\square I can compare the motion of an object dropped from rest and an object with an initial horizontal velocity
\square I can calculate the air time and speed for a horizontal projectile

I I can describe how the vertical and horizontal components are independent from each other for a projectile's motion
\square I can compare the air time for two projectiles given their trajectories.

