Motion

IB Physics Content Guide

Big Ideas

- Motion is described relative to a chosen coordinate system.
- Displacement-time, velocity-time, and accel-time graphs are connected in the representation of physical motion.
- When an object is at constant velocity, displacement-time is linear.
- When an object is at constant acceleration, displacement-time is quadratic (curved), and velocity-time is linear.
- Kinematic equations can take three of the suvat variables to solve for the remaining two
- Vector quantities can be combined to find resultant vectors or divided into their component parts
- X and Y motion are independent of each other for a two-dimensional projectile

Content Objectives

1 - Units

I can describe the difference between quantitative and qualitative observations		
I can identify the 7 Fundamental SI units		
I can define and give an example of a derived unit		
I can represent fractional units with negative exponents		
I can convert metric units between prefixes		
I can convert fraction units and exponential units using Dimensional Analysis		
I can use dimensional analysis to verify a formula		
I can use dimensional analysis to determine the units for a solution		
I can represent large and small numbers using scientific notation		
I can compare quantities by orders of magnitude		

2 - Displacement Graphs

I can describe the difference between distance and displacement			
I can calculate distance and displacement for 1D motion			
I can plot constant velocity on a displacement vs time graph			
I can plot changing velocity on a displacement vs time graph			
I can use a d vs t graph to identify if an object is moving in the positive/negative/speeding/slowing			

3 - Velocity Graphs

I can describe the difference between speed and velocity			
I can compare the difference between a vector and scalar quantity			
I can plot constant velocity on a velocity vs time graph			
I can plot changing velocity on a velocity vs time graph			
I can use a v vs t graph to identify if an object is moving in the positive/negative/speeding/slowing			
I can define acceleration in terms of velocity			

4 - Calculating from Graphs

I can use an equation to calculate average speed/velocity		
I can calculate instantaneous velocity using the slope of a displacement vs time graph		
I can calculate instantaneous acceleration using the slope of a displacement vs time graph		
I can calculate overall displacement using the area of a velocity vs time graph		

5 - The Kinematic Equations

I can identify the 5 primary variables of accelerating motion (suvat)		
I can identify the proper kinematic equation to use for a problem that is presented		
I can rearrange to solve for the unknown variable		
I can calculate for an unknown using the kinematic equations		

6 - Free Fall

I can identify the constant acceleration due to gravity neglecting air resistance		
I can interpret a free fall problem to identify hidden values and understand		
I can use the kinematic equations to solve free fall problems		
I can experimentally determine the acceleration due to gravity		

7 - Horizontal Projectiles

I can add and subtract vectors to find a resultant		
I can calculate an angle from two components of a right triangle		
I can calculate the x and y components of a vector given the magnitude and angle		
I can identify hidden values for a horizontal projectile problem		
I can use information about a horizontal projectile's motion to calculate the initial velocity		
I can use the x and y velocity components to calculate a projectile's impact velocity and angle		

8 - Projectile Motion

I can identify hidden values for a projectile launched at an angle		
I can calculate the x and y components for an initial velocity at an angle		
I can calculate max height for a projectile launched at angle		
I can calculate distance traveled for a projectile launched at angle		
I can calculate total air time for a projectile launched at angle		

Motion

 Shelving GuideList the seven fundamental base units and their abbreviations:

	Unit	Abbreviation
Length		
Mass		
Time		
Electric Current		
Temperature		
Amount of Substance		
Luminous Intensity		

Metric Prefixes - List the unit prefixes in their appropriate decimal position

Dimensional Analysis

Convert the following:
$20 \mathrm{mi} \mathrm{hr}^{-1} \rightarrow \mathrm{~m} \mathrm{~s}^{-1}$
$0.0007 \mathrm{~km}^{2} \rightarrow \mathrm{~m}^{2}$

Determine the units for Q :

$\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$	m (mass)	kg
	c (specific heat)	$\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
	ΔT (change in temp)	K

	Scalar	Vector
How far (m)		
How fast $\left(\mathrm{m} \mathrm{s}^{-1}\right)$		

	Displacement vs Time	Velocity vs Time	Acceleration vs Time
Meaning of the Graph	Slope:	Slope:	Area under the Curve:
Constant Displacement		Area under the Curve:	
Constant Positive Velocity			
Constant Negative Velocity			
Constant Positive			
Acceleration (speeding up)			
Constant Negative Acceleration slowing down)			

	Variable Symbol	Unit
Displacement		
Initial Velocity		
Final Velocity		
Acceleration		
Time		

Kinematic Equations	s	u	v	a	t
$v=u+a t$					
$s=u t+\frac{1}{2} a t^{2}$					
$v^{2}=u^{2}+2 a s$					
$s=\frac{(v+u) t}{2}$					

Horizontal Component		
Vertical Component		

	Vertical	$\xrightarrow[u_{y}=]{u_{x}=}$
s		
u		
v		
a		
t		

	Vertical	
S		
u		
V		
a		
t		

