Kinetic Molecular Theory

IB PHYSICS | THERMAL PHYSICS

Kinetic Theory of Gases

Assumptions:

- Large # of identical molecules
- Volume of molecules is negligible
- Motion is random
- No forces between molecules
- All collisions are elastic

Kinetic Energy is conserved

If these assumptions are true we have an

Ideal Gas

Review of Momentum / Collisions

What is the force of this ball on the wall?

$$Impulse = F\Delta t = \Delta p$$

$$\Delta v = 16 \text{ ms}^{-1}$$

$$V = -8 \text{ m s}^{-1}$$

$$V = -8 \text{ m s}^{-1}$$

$$M = 5 \text{ kg}$$

$$\Delta t = 0.2 \text{ s}$$

Pressure

When many molecules collide with the sides of a container it is measured as **pressure**

Quantity	Symbol	Unit	
Force	F	[N]	$p = \frac{F}{I}$
Area	A	[m ²]	• A
Pressure	p	$[N m^{-2}]=$	= [Pa] Pascal

A brief interlude...

 $\int \frac{N}{m^2} = Pa$

Units of Pressure

There are several different units used to measure pressure of a gas

1 atm = 101,325 Pa = 760 Torr = 760 mm Hg 100 kPa is a pretty good approximation

Atmospheric Pressure

What is the force from atmospheric pressure on this doormat?

 $(101,325 N m^{-2})(0.33 m^2)$

Temperature Review

Measure of how hot or cold something feels

Temperature is the average kinetic energy of the molecules of a substance

Kelvin Scale (K)
Absolute
Temperature

Average Kinetic Energy

$$\bar{E}_K = \frac{3}{2}k_B T$$

 $k_B \rightarrow Boltzmann's \ constant$ $k_B = 1.38 \times 10^{-23} \ J \ K^{-1}$

Quantity	Symbol	Unit
Average Kinetic Energy	\overline{E}_{K}	[J]
Absolute Temperature	T	[K]

IB Physics Data Booklet

Sub-topic 3.1 – Thermal concepts	Sub-topic 3.2 – Modelling a gas
$Q = mc\Delta T$	$p = \frac{F}{4}$
Q = mL	
	$n = \frac{N}{N_A}$
	pV = nRT
	$\overline{E}_{\mathrm{K}} = \frac{3}{2} k_{\mathrm{B}} T = \frac{3}{2} \frac{R}{N_{\mathrm{A}}} T$

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	9.81 m s ⁻²
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
Avogadro's constant	N _A	$6.02 \times 10^{23} \mathrm{mol}^{-1}$
Gas constant	R	$8.31 \text{J}\text{K}^{-1}\text{mol}^{-1}$
Boltzmann's constant	$k_{ m B}$	$1.38 imes 10^{-23} \text{J K}^{-1}$

Try This | 1

Calculate the average translational kinetic energy of molecules in the air at 27°C

- $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$
- $T = 27^{\circ}C + 273 = 300 \text{ K}$

$$\bar{E}_k = \frac{3}{2} k_B T = \frac{3}{2} (1.38 \times 10^{-23}) (300)$$
$$\bar{E}_k = 6.21 \times 10^{-21}$$

What is Kinetic Energy?

 $k_B \rightarrow Boltzmann's constant$ $\bar{E}_K = \frac{3}{2}k_B T$ $k_B = 1.38 \times 10^{-23} \, J \, K^{-1}$

Try This | 2

Calculate the average speed for oxygen molecules at 0°C. (the mass of an oxygen molecule is 5.32×10^{-26} kg)

$$m = 5.32 \times 10^{-26} \text{ kg}$$

$$k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

$$\overline{E}_k = \frac{3}{2} k_B T = \frac{1}{2} m v^2$$

$$\overline{E}_k = \frac{3}{2} k_B T = \frac{1}{2} m v^2$$

$$\frac{3}{2}(1.38 \times 10^{-23})(273) = \frac{1}{2}(5.32 \times 10^{-26})v^2$$

$$5.62 \times 10^{-21} \text{ J} = \frac{1}{2} (5.32 \times 10^{-26}) v^2$$

26.

 $v = 461 \, {\rm m s}^{-1}$

Which molecules move faster?

$$\overline{E}_k = \frac{1}{2}mv^2$$

If the gases have the same kinetic energy (temp), the lighter one must be moving faster 8 **O** 16.00

 O_2 gas at 23°C

Lesson Takeaways

- I can describe the conditions necessary for a substance to be considered an ideal gas
- I can define pressure with appropriate fundamental and derived units
- □ I can relate average molecular kinetic energy with absolute temperature
- I can calculate the average molecule speed for a molecule at a certain temperature
- □ I can discuss how the mass of a molecule changes its overall speed at a given temperature