Kinetic Molecular Theory

IB PHYSICS | THERMAL PHYSICS

Kinetic Theory of Gases

Assumptions:

- Large \# of identical molecules
- Volume of molecules is negligible
- Motion is random
- No forces between molecules
- All collisions are elastic

Review of Momentum / Collisions

What is the force of this ball on the wall?

Impulse $=F \Delta t=\Delta p$

$$
\begin{aligned}
& \mathrm{m}=5 \mathrm{~kg} \\
& \Delta \mathrm{t}=0.2 \mathrm{~s}
\end{aligned}
$$

Pressure

When many molecules collide with the sides of a container it is measured as pressure

Quantity Symbol Unit
 Force
 $$
p=\frac{F}{A}
$$
 Area

Pressure

A brief interlude...

Units of Pressure

There are several different units used to measure pressure of a gas

$$
1 \text { atm }=101,325 \mathrm{~Pa}=760 \text { Torr }=760 \mathrm{~mm} \mathrm{Hg}
$$

Atmospheric Pressure

What is the force from atmospheric pressure on this doormat?

Temperature Review

Measure of how hot or cold something feels
Temperature is the average kinetic energy of the molecules of a substance

Kelvin Scale (K)

Average Kinetic Energy

$$
\bar{E}_{K}=\frac{3}{2} k_{B} T \quad \begin{aligned}
& k_{B} \rightarrow \text { Boltzmann's constant } \\
& k_{B}=1.38 \times 10^{-23} J K^{-1}
\end{aligned}
$$

Quantity

Symbol
Unit
Average
Kinetic Energy
Absolute
Temperature

IB Physics Data Booklet

Sub-topic 3.1 - Thermal concepts	Sub-topic 3.2 - Modelling a gas
$Q=m c \Delta T$	$p=\frac{F}{A}$
$Q=m L$	$n=\frac{N}{N_{\mathrm{A}}}$
	$p V=n R T$
	$\bar{E}_{\mathrm{K}}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{2} \frac{R}{N_{\mathrm{A}}} T$

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Avogadro's constant	N_{A}	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Gas constant	R	$8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$

Try This | 1

Calculate the average translational kinetic energy of molecules in the air at $27^{\circ} \mathrm{C}$

What is Kinetic Energy?

$$
\bar{E}_{K}=\frac{3}{2} k_{B} T \quad \begin{aligned}
& k_{B} \rightarrow \text { Boltzmann's constant } \\
& k_{B}=1.38 \times 10^{-23} J K^{-1}
\end{aligned}
$$

Try This | 2

Calculate the average speed for oxygen molecules at $0^{\circ} \mathrm{C}$. (the mass of an oxygen molecule is $5.32 \times 10^{-26} \mathrm{~kg}$)

Which molecules move faster?

H_{2} gas at $23^{\circ} \mathrm{C}$

O_{2} gas at $23^{\circ} \mathrm{C}$ 8

$$
\mathrm{O}_{16.00}
$$

Lesson Takeaways

\square I can describe the conditions necessary for a substance to be considered an ideal gas
I can define pressure with appropriate fundamental and derived units

I can relate average molecular kinetic energy with absolute temperature
\square I can calculate the average molecule speed for a molecule at a certain temperature
\square I can discuss how the mass of a molecule changes its overall speed at a given temperature

