Kinetic Molecular Theory

IB PHYSICS | THERMAL PHYSICS

Kinetic Theory of Gases

Assumptions:

- Large # of identical molecules
- Volume of molecules is negligible
- Motion is random
- No forces between molecules
- All collisions are elastic

Review of Momentum / Collisions

What is the force of this ball on the wall?

 $Impulse = F\Delta t = \Delta p$

m = 5 kg $\Delta t = 0.2 \text{ s}$

Pressure

When many molecules collide with the sides of a container it is measured as **pressure**

Quantity	Symbol	Unit	
Force			$p = \frac{F}{A}$
Area			• A
Pressure			

A brief interlude...

Units of Pressure

There are several different units used to measure pressure of a gas

1 atm = 101,325 Pa = 760 Torr = 760 mm Hg

Atmospheric Pressure

What is the force from atmospheric pressure on this doormat?

Temperature Review

Measure of how hot or cold something feels

Temperature is the average kinetic energy of the molecules of a substance

Average Kinetic Energy

$$\overline{E}_K = \frac{3}{2}k_BT \qquad \begin{array}{c} k_B \to Bo \\ k_B = 1.3 \end{array}$$

 $k_B \rightarrow Boltzmann's \ constant$ $k_B = 1.38 \times 10^{-23} \ J \ K^{-1}$

Quantity	Symbol	Unit
Average Kinetic Energy		
Absolute Temperature		

IB Physics Data Booklet

Sub-topic 3.1 – Thermal concepts	Sub-topic 3.2 – Modelling a gas
$Q = mc\Delta T$ $Q = mL$	$p = \frac{F}{A}$ $n = \frac{N}{N_{A}}$ $pV = nRT$ $\bar{E}_{K} = \frac{3}{2}k_{B}T = \frac{3}{2}\frac{R}{N_{A}}T$

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	9.81 m s ⁻²
Gravitational constant	G	$6.67 imes 10^{-11} N m^2 kg^{-2}$
Avogadro's constant	N _A	$6.02 \times 10^{23} \mathrm{mol}^{-1}$
Gas constant	R	$8.31 \text{J} \text{K}^{-1} \text{mol}^{-1}$
Boltzmann's constant	$k_{\rm B}$	$1.38 \times 10^{-23} \text{J} \text{K}^{-1}$

Try This | 1

Calculate the average translational kinetic energy of molecules in the air at 27°C

What is Kinetic Energy?

$$\overline{E}_{K} = \frac{3}{2}k_{B}T \qquad \begin{array}{c} k_{B} \rightarrow Boltzmann's \ constant \\ k_{B} = 1.38 \times 10^{-23} \ J \ K^{-1} \end{array}$$

Try This | 2

Calculate the average speed for oxygen molecules at 0°C. (the mass of an oxygen molecule is 5.32×10^{-26} kg)

Which molecules move faster?

H₂ gas at 23°C

O_2 gas at 23°C

Lesson Takeaways

- I can describe the conditions necessary for a substance to be considered an ideal gas
- I can define pressure with appropriate fundamental and derived units
- □ I can relate average molecular kinetic energy with absolute temperature
- I can calculate the average molecule speed for a molecule at a certain temperature
- □ I can discuss how the mass of a molecule changes its overall speed at a given temperature