The Mole

IB PHYSICS | THERMAL PHYSICS

Grouping Items

We can use many different terms to describe the amount of substance.

A pair of shoes 2 shoes

BONUS!

A Baker's Dozen $=13$

A Score $=20$

A Gross = 144

Counting Atoms

The primary counting unit for atoms is called
The Mole

$$
1 \text { mole }=6.02 \times 10^{23}=\mathrm{N}_{\mathrm{A}}
$$

This is also called Avogadro's Number named after the scientist who first proposed this concept

How Big is a Mole??

602,000,000,000,000,000,000,000

How Big is a Mole??

A Mole of Moles

What would happen if you were to gather a mole (unit of measurement) of moles (the small furry critter) in one place?
-Sean Rice

Things get a bit gruesome

First, some definitions. A mole is a unit. It's not a typical unit, though. It's really just a numberlike "dozen" or "billion." If you have a mole of something, it means you have $602,214,129,000,000,000,000,000$ of them (usually written 6.022×10^{23}). It's such a big number because it's used for counting numbers of molecules, which there are a lot of.

THERE ARE TOO MANY MOLECVLES.

Taken from the book "What if?" by
Randall Munroe

SERIOUS SCIENTIFIC ANSWERS 1o Absurd Hypolleticicl Qunstions
 what if?

RANDALL MUNROE creotor of xkcd

Using Moles in Chemistry

Atoms don't weigh very much on their own:

$$
\begin{aligned}
& 1 \text { Carbon Atom }=1.9927 \times 10^{-23} \mathrm{~g} \\
& 0.000000000000000000000019927 \mathrm{~g}
\end{aligned}
$$

1 mole of Carbon Atoms =
$\left(1.9927 \times 10^{-23} \mathrm{~g}\right) \times\left(6.02 \times 10^{23}\right)=\sim 12 \mathrm{~g}$
Where else have you seen this number for Carbon?

Example IB Questions

10. The mole is defined as
A. $\frac{1}{12}$ the mass of an atom of the isotope carbon-12.
B. the amount of a substance that contains as many elementary entities as the number of atoms in 12 g of the isotope carbon- 12 .
C. the mass of one atom of the isotope carbon-12.
D. the amount of a substance that contains as many nuclei as the number of nuclei in 12 g of the isotope carbon-12.

Molar Mass

Molar Mass - the mass of 1 mole of a substance

Unit $\quad \mathrm{g} \mathrm{mol}^{-1}$

Molar mass of $\mathrm{N}=14.01 \mathrm{~g} \mathrm{~mol}^{-1}$
Molar mass of $S=32.07 \mathrm{~g} \mathrm{~mol}^{-1}$

Molar Mass

1 mole of copper can be represented by this stack of pure copper pennies

How many atoms are in 1 mole of copper?
6.02×10^{23} atoms

Molar Mass

1 mole of copper can be represented by this stack of pure copper pennies

What is the mass of one mole of copper?
63.55 g

Molar Mass

1 mole of copper can be represented by this stack of pure copper pennies

What is the mass of one atom of copper?
$\frac{63.55 \mathrm{~g}}{6.02 \times 10^{23} \text { atoms }}=\mathbf{1 . 0 5} \times \mathbf{1 0}^{-\mathbf{2 2}} \mathbf{g}$

Copper
63.55
$+2,1$

More than one mole...

How much mass would 3 moles of Copper have?

29 and cu coper 63.55 $+2,1$ $3 \mathrm{~mol} \times 63.55 \mathrm{~g} \mathrm{~mol}^{-1}=$$\quad 190.65 \mathrm{~g}$

How many moles are in 28 g of Nitrogen?

Nitrogen
14.01
∞-3

Example IB Questions

11. What is the mass of carbon- 12 that contains the same number of atoms as 14 g of silicon- 28 ?
A. 6 g
$\begin{gathered}\text { B. }{ }^{12 g} \\ \text { c. } 14 \mathrm{~g}\end{gathered} \frac{14 \mathrm{~g}}{28 \mathrm{~g} \mathrm{~mol}^{-1}}=0.5 \mathrm{~mol}$

$0.5 \mathrm{~mol} \times 12 \mathrm{~g} \mathrm{~mol}^{-1}=\mathbf{6} \mathbf{g}$

11. A sample contains 4 g of helium and 20 g of neon. The mass number of helium is 4 and the mass number of neon is 20 .

What is the ratio $\frac{\text { number of atoms of neon }}{\text { number of atoms of helium }}$?
A. 0.2
B. 1
C. 5
D. 80

$$
\frac{4 \mathrm{~g}}{4 \mathrm{~g} \mathrm{~mol}^{-1}}=1 \mathrm{~mol}
$$

$$
\frac{20 \mathrm{~g}}{20 \mathrm{~g} \mathrm{~mol}^{-1}}=1 \mathrm{~mol}
$$

More than one atom...

Mg

$(1 \times 24.31)+(2 \times 14.01)+(6 \times 16.00)$ $=148.33 \mathrm{~g} \mathrm{~mol}^{-1}$

Lesson Takeaways

\square I can describe the importance of having a large quantity like the "mole" defined
\square I can use the average atomic weight of an element or compound to convert between mass and moles and numbers of atoms

