Gas Laws

IB PHYSICS | THERMAL PHYSICS

Ideal Gas

Assumptions:

No longer ideal when...

- Large \# of identical molecules
- Volume of molecules is negligible
- Motion is random
- No forces between molecules
- All collisions are elastic

- Close to Phase Change
- All internal energy is from E_{k}

Boyle's Law | Volume and Pressure

(1) Volume © Pressure

$p \propto \frac{1}{V}$

Boyle's Law | Volume and Pressure

When diaphragm contracts the lung volume increases, decreasing the air pressure inside. With a pressure differential, air flows into the lungs (high pressure to low pressure)

Inspiration

Expiration

Pressure Law | Temp and Pressure

(4) Temperature (4) Pressure $\quad p \propto T$

Pressure Law | Temp and Pressure

When you spray, the pressure decreases dramatically and the temperature drops

If temperature exceeds a certain amount, the increasing pressure could make a pressurized container explode!

Charles's Law | Temp and Volume

(\uparrow Temperature \uparrow Volume $\quad V \propto T$

Charles's Law | Temp and Volume

Ideal Gas Law

1
 $p \propto T \quad V \propto T$

$p V$

$$
n R T
$$

Ideal Gas Law

Quantity

Symbol
Unit

$p V=n R T$

Pressure
p
[Pa] [atm]
Volume
$V \quad\left[\mathrm{~m}^{3}\right] \quad[\mathrm{L}]$
Amount n [mol]
Temperature
$T \quad[\mathrm{~K}]$
Gas Constant

$$
R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

IB Physics Data Booklet

Sub-topic 3.1 - Thermal concepts	Sub-topic 3.2 - Modelling a gas
$Q=m c \Delta T$	$p=\frac{F}{A}$
$Q=m L$	$n=\frac{N}{N_{\mathrm{A}}}$
	$p V=n R T$
	$\bar{E}_{\mathrm{K}}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{2} \frac{R}{N_{\mathrm{A}}} T$

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Avogadro's constant	N_{A}	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Gas constant	R	$8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$

Try This

What is the pressure of 23 mol of a gas behaving ideally in a $0.25 \mathrm{~m}^{3}$ container at 310 K ?

$$
\begin{aligned}
p & =? \\
V & =0.25 \mathrm{~m}^{3} \\
n & =23 \mathrm{~mol} \\
R & =8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
T & =310 \mathrm{~K}
\end{aligned}
$$

$$
p V=n R T
$$

$$
p(0.25)=(23)(8.31)(310)
$$

$$
p=237,000 \mathrm{~Pa}
$$

Change in Volume

A fixed mass of an ideal gas has a volume of $0.14 \mathrm{~m}^{3}$ at 301 K . If its temperature is increased to 365 K at the same pressure, what is its new volume, V_{2} ?
$p V=n R T$
Rearrange so constants are on one side

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \Rightarrow \frac{0.14 \mathrm{~m}^{3}}{301 \mathrm{~K}}=\frac{V_{2}}{365 \mathrm{~K}}
$$

$$
\frac{V}{T}=\frac{n R}{p}
$$

$$
V_{2}=0.17 \mathrm{~m}^{3}
$$

Try This

A sample of ammonia is found to occupy 0.250 L under laboratory conditions of $27^{\circ} \mathrm{C}$ and 0.850 atm . Find the volume of this sample at $0^{\circ} \mathrm{C}$ and 1.00 atm .

$$
p V=n R T \quad \frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}
$$

Rearrange so constants
$\frac{p V}{T}=n R$

$$
\frac{(0.850)(0.250)}{(27+273)}=\frac{(1.00)\left(V_{2}\right)}{(0+273)}
$$

$$
V_{2}=0.19 L
$$

Draw these graphs

$p V=n R T$

Related Constants

Gas Constant
$R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\frac{R}{k_{B}}=\frac{8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}{1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& \text { Boltzmann' s constant } \\
& k_{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1}
\end{aligned}
$$

Average Kinetic Energy

$$
\bar{E}_{K}=\frac{3}{2} \underset{\uparrow}{k_{B} T} T=\frac{3}{2} \frac{R}{N_{A}} T
$$

Same Constant Value

Boltzmann' s constant $k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$

Gas Constant
$R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

IB Physics Data Booklet

Sub-topic 3.1 - Thermal concepts	Sub-topic 3.2 - Modelling a gas
$Q=m c \Delta T$	$p=\frac{F}{A}$
$Q=m L$	$n=\frac{N}{N_{\mathrm{A}}}$
	$p V=n R T$
	$\bar{E}_{\mathrm{K}}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{2} \frac{R}{N_{\mathrm{A}}} T$

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Avogadro's constant	N_{A}	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Gas constant	R	$8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$

Lesson Takeaways

\square I can identify conditions when a substance is no longer considered an ideal gas
\square I can describe the relationships between volume, temperature, and pressure in an ideal gas
\square I can use the Ideal Gas Law to solve for pressure, volume, amount, or temperature
\square I can use the Ideal Gas Law to describe how changing one or more variable(s) would affect another

