Gas Laws

IB PHYSICS | THERMAL PHYSICS

Ideal Gas

Assumptions:

- Large # of identical molecules
- Volume of molecules is negligible
- Motion is random
- No forces between molecules
- All collisions are elastic

No longer ideal when...

- Compressed
 - Molecules close together
- Close to Phase Change
 - All internal energy is from E_k

Boyle's Law | Volume and Pressure

Boyle's Law | Volume and Pressure

Diaphragm

contracts

When diaphragm contracts the lung Inspiration volume increases, decreasing the air pressure inside. With a pressure differential, air flows into the lungs (high pressure to low pressure) $P_{\text{lungs}} = 1 - 3 \text{ torr lower}$

 $P_{\text{lunas}} = 1-3$ torr higher Diaphragm relaxes

Expiration

Pressure Law | Temp and Pressure

Pressure Law | Temp and Pressure

When you spray, the pressure decreases dramatically and the temperature drops

If temperature exceeds a certain amount, the increasing pressure could make a pressurized container explode!

CAUTION

EXTREMELY FLAMMABLE

and do not expose to temperatures exceeding 50°C. Do not pierce orb after use. Do not spray on a naked any incandescent material. Keep aw in the second spray to a naked areas. Do not spray towards eyes or of ignition - No smoking. Use only in we

OUT OF REACH OF BABIES, CHILDREN AN

Pressurised container: protect from unit

Solvent abuse can www.explainthatstuff.com

Charles's Law | Temp and Volume

Charles's Law | Temp and Volume

When the temperature of the air inside a balloon decreases, so does the volume. (this effect is even more dramatic when the gas condenses into a liquid)

Ideal Gas Law

Ideal Gas Law

Quantity	Symbol	Unit	pV = nRT
Pressure	p	[Pa]	[atm]
Volume	V	[m ³]	[L]
Amount	n	[mol]	
Temperature	T	[K]	Gas Constant R = 8.31 J K ⁻¹ mol ⁻¹

IB Physics Data Booklet

$Q = mc\Delta T$ $Q = mL$ $p = \frac{F}{A}$ $n = \frac{N}{N_A}$	Sub-topic 3.1 – Thermal concepts	Sub-topic 3.2 – Modelling a gas
$\overline{E}_{\rm K} = \frac{3}{2} k_{\rm B} T = \frac{3}{2} \frac{R}{N_{\rm A}} T$	$Q = mc\Delta T$ $Q = mL$	$p = \frac{F}{A}$ $n = \frac{N}{N_{A}}$ $pV = nRT$ $\bar{E}_{K} = \frac{3}{2}k_{B}T = \frac{3}{2}\frac{R}{N_{A}}T$

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	9.81 m s ⁻²
Gravitational constant	G	$6.67 imes 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
Avogadro's constant	N _A	$6.02 \times 10^{23} \mathrm{mol}^{-1}$
Gas constant	R	$8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Boltzmann's constant	k _B	$1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$

Try This

What is the pressure of 23 mol of a gas behaving ideally in a 0.25 m³ container at 310 K?

p = ? $V = 0.25 \text{ m}^3$ n = 23 mol $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ T = 310 K pV = nRTp(0.25) = (23)(8.31)(310)

Change in Volume

A fixed mass of an ideal gas has a volume of 0.14 m³ at 301 K. If its temperature is increased to 365 K at the same pressure, what is its new volume, V₂?

Try This

A sample of ammonia is found to occupy 0.250 L under laboratory conditions of 27 °C and 0.850 atm. Find the volume of this sample at 0 °C and 1.00 atm.

pV = nRT

Rearrange so constants are on one side

 $\frac{pV}{T} = nR$

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

$$\frac{(0.850)(0.250)}{(27+273)} = \frac{(1.00)(V_2)}{(0+273)}$$

$$V_2 = 0.19 L$$

Draw these graphs

Related Constants

Boltzmann' s constant $k_B = 1.38 \times 10^{-23} J K^{-1}$

Average Kinetic Energy

$$\overline{E}_{K} = \frac{3}{2} \frac{k_{B}}{L} T = \frac{3}{2} \frac{R}{N_{A}} T$$
Same Constant Value

Boltzmann' s constant $k_B = 1.38 \times 10^{-23} J K^{-1}$

Gas Constant R = 8.31 J K⁻¹ mol⁻¹

IB Physics Data Booklet

Sub-topic 3.1 – Thermal concepts	Sub-topic 3.2 – Modelling a gas
$Q = mc\Delta T$ $Q = mL$	$p = \frac{F}{A}$ $n = \frac{N}{N_{A}}$ $pV = nRT$ $\overline{E}_{K} = \frac{3}{2} k_{B}T = \frac{3}{2} \frac{R}{N_{A}}T$

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	9.81 m s ⁻²
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
Avogadro's constant	N _A	$6.02 \times 10^{23} \mathrm{mol}^{-1}$
Gas constant	R	$8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \text{J K}^{-1}$

Lesson Takeaways

- I can identify conditions when a substance is no longer considered an ideal gas
- □ I can describe the relationships between volume, temperature, and pressure in an ideal gas
- □ I can use the Ideal Gas Law to solve for pressure, volume, amount, or temperature
- □ I can use the Ideal Gas Law to describe how changing one or more variable(s) would affect another