Gas Laws

IB PHYSICS | THERMAL PHYSICS

Ideal Gas

Assumptions:

- Large # of identical molecules
- Volume of molecules is negligible
- Motion is random
- No forces between molecules
- All collisions are elastic

No longer ideal when...

Boyle's Law | Volume and Pressure

Boyle's Law | Volume and Pressure

Pressure Law | Temp and Pressure

Pressure Law | Temp and Pressure

Charles's Law | Temp and Volume

250°C

-65°C

Charles's Law | Temp and Volume

Ideal Gas Law

 $p \propto \frac{1}{V}$

$p \propto T$ $V \propto T$

Ideal Gas Law

Quantity	Symbol	Unit
Pressure		
Volume		
Amount		
Temperature		

pV = nRT

IB Physics Data Booklet

Sub-topic 3.1 – Thermal concepts	Sub-topic 3.2 – Modelling a gas
$Q = mc\Delta T$ $Q = mL$	$p = \frac{F}{A}$ $n = \frac{N}{N_{A}}$ $pV = nRT$ $\bar{E}_{K} = \frac{3}{2}k_{B}T = \frac{3}{2}\frac{R}{N_{A}}T$
	· · A

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	9.81 m s ⁻²
Gravitational constant	G	$6.67 imes 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
Avogadro's constant	N _A	$6.02 \times 10^{23} \mathrm{mol}^{-1}$
Gas constant	R	$8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Boltzmann's constant	k_{B}	$1.38 imes 10^{-23} \text{J} \text{K}^{-1}$

Try This

What is the pressure of 23 mol of a gas behaving ideally in a 0.25 m³ container at 310 K?

Change in Volume

A fixed mass of an ideal gas has a volume of 0.14 m³ at 301 K. If its temperature is increased to 365 K at the same pressure, what is its new volume, V₂?

pV = nRT

Try This

A sample of ammonia is found to occupy 0.250 L under laboratory conditions of 27 °C and 0.850 atm. Find the volume of this sample at 0 °C and 1.00 atm.

pV = nRT

Draw these graphs

Related Constants

Gas Constant $R = 8.31 J K^{-1} mol^{-1}$

> Boltzmann' s constant $k_B = 1.38 \times 10^{-23} J K^{-1}$

Average Kinetic Energy

$$\overline{E}_K = \frac{3}{2}k_BT = \frac{3}{2}\frac{R}{N_A}T$$

Boltzmann' s constant $k_B = 1.38 \times 10^{-23} J K^{-1}$

Gas Constant R = 8.31 J K⁻¹ mol⁻¹

IB Physics Data Booklet

Sub-topic 3.1 – Thermal concepts	Sub-topic 3.2 – Modelling a gas
$Q = mc\Delta T$ $Q = mL$	$p = \frac{F}{A}$ $n = \frac{N}{N_{A}}$ $pV = nRT$ $\bar{E}_{K} = \frac{3}{2}k_{B}T = \frac{3}{2}\frac{R}{N_{A}}T$
	· · A

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	9.81 m s ⁻²
Gravitational constant	G	$6.67 imes 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
Avogadro's constant	N _A	$6.02 \times 10^{23} \text{mol}^{-1}$
Gas constant	R	$8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Boltzmann's constant	k_{B}	$1.38 imes 10^{-23} \text{J K}^{-1}$

Lesson Takeaways

- I can identify conditions when a substance is no longer considered an ideal gas
- □ I can describe the relationships between volume, temperature, and pressure in an ideal gas
- □ I can use the Ideal Gas Law to solve for pressure, volume, amount, or temperature
- □ I can use the Ideal Gas Law to describe how changing one or more variable(s) would affect another