Gas Laws

IB PHYSICS | THERMAL PHYSICS

Ideal Gas

Assumptions:

No longer ideal when...

- Large \# of identical molecules
- Volume of molecules is negligible
- Motion is random
- No forces between molecules
- All collisions are elastic

Boyle's Law | Volume and Pressure

(1)Volume \bigcirc Pressure

Boyle's Law | Volume and Pressure

Expiration

Pressure Law | Temp and Pressure

(4) Temperature
 Pressure

Pressure Law | Temp and Pressure

EXTREMELY FLAMMABLE

Pressurised container: protect froms and do not expose to temperaturs exceeding $50^{\circ} \mathrm{C}$. Do not pierce orborn atter use. Do not spray on a nakedtors any incandescent material. Keep amgts is of ignition - No smoking. Use only in we Fated areas. Do not spray towards eyes or bac 20I OF REACH OF BABIES, CHILDREN AND AN

WARNING

Solvent abuse can www.explainthatstuff.com

Charles's Law | Temp and Volume

(4) Temperature \bigcirc Volume

Charles's Law | Temp and Volume

Ideal Gas Law

$$
p \propto \frac{1}{V} \quad p \propto T \quad V \propto T
$$

Ideal Gas Law

Quantity	Symbol	Unit
Pressure		
Volume		
Amount		

Temperature

IB Physics Data Booklet

Sub-topic 3.1 - Thermal concepts	Sub-topic 3.2 - Modelling a gas
$Q=m c \Delta T$	$p=\frac{F}{A}$
$Q=m L$	$n=\frac{N}{N_{\mathrm{A}}}$
	$p V=n R T$
	$\bar{E}_{\mathrm{K}}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{2} \frac{R}{N_{\mathrm{A}}} T$

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Avogadro's constant	N_{A}	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Gas constant	R	$8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$

Try This

What is the pressure of 23 mol of a gas behaving ideally in a $0.25 \mathrm{~m}^{3}$ container at 310 K ?

Change in Volume

A fixed mass of an ideal gas has a volume of $0.14 \mathrm{~m}^{3}$ at 301 K . If its temperature is increased to 365 K at the same pressure, what is its new volume, V_{2} ?
$p V=n R T$

Try This

A sample of ammonia is found to occupy 0.250 L under laboratory conditions of $27^{\circ} \mathrm{C}$ and 0.850 atm . Find the volume of this sample at $0^{\circ} \mathrm{C}$ and 1.00 atm .

$p V=n R T$

Draw these graphs

$p V=n R T$

Related Constants

Gas Constant
$R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Boltzmann's constant $k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$

Average Kinetic Energy

$$
\bar{E}_{K}=\frac{3}{2} k_{B} T=\frac{3}{2} \frac{R}{N_{A}} T
$$

Boltzmann' s constant $k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$

Gas Constant
$R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

IB Physics Data Booklet

Sub-topic 3.1 - Thermal concepts	Sub-topic 3.2 - Modelling a gas
$Q=m c \Delta T$	$p=\frac{F}{A}$
$Q=m L$	$n=\frac{N}{N_{\mathrm{A}}}$
	$p V=n R T$
	$\bar{E}_{\mathrm{K}}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{2} \frac{R}{N_{\mathrm{A}}} T$

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Avogadro's constant	N_{A}	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Gas constant	R	$8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$

Lesson Takeaways

\square I can identify conditions when a substance is no longer considered an ideal gas
\square I can describe the relationships between volume, temperature, and pressure in an ideal gas
\square I can use the Ideal Gas Law to solve for pressure, volume, amount, or temperature
\square I can use the Ideal Gas Law to describe how changing one or more variable(s) would affect another

