## THERMAL PHYSICS

IB PHYSICS | COMPLETED NOTES

## Heat vs Temperature

IB PHYSICS | THERMAL PHYSICS

## Temperature - What is it?

Measure of how hot or cold something feels Quantitative or Qualitative?

Temperature is the average

## Kinetic Energy

 of the molecules of a substanceThe faster the particles move, the

$$
E_{K}=\frac{1}{2} m v^{2}
$$ more temperature increases

Circle the container with the highest temperature


## Temperature

Which rock has a higher temperature (average kinetic energy)?


## Same!

## Temperature Scales

## It is important that we can quantify temperature



Which temperature scale is the most precise?

Fahrenheit (smallest increments)

On which temperature scale(s) would an increase of one degree be largest?

Celsius or Kelvin

## Absolute Zero

At absolute zero, all molecules
stop moving


FS THE CIILEST

## Celsius and Kelvin

$$
T(\mathrm{~K})=T\left({ }^{\circ} \mathrm{C}\right)+273
$$

| $-40^{\circ} \mathrm{C}$ | 233 K |
| :---: | :---: |
| $0^{\circ} \mathrm{C}$ | 273 K |
| $22^{\circ} \mathrm{C}$ | 295 K |
| $100^{\circ} \mathrm{C}$ | 373 K |

## Temperature Scales



## VS

Kelvin


[-] the_breadlord 2067 points 2 days ago* (last edited 1 day ago) (3946|1881 Did you hear about the man who got cooled to absolute zero? He's OK now.


## Temperature

Which has a higher temperature?


Burning Match


Ice Sculpture

## Total Internal Energy

$$
E_{\mathrm{INT}}=E_{\mathrm{K}}+E_{\mathrm{P}}-
$$ Potential Energy

## State of Matter

Kinetic Energy
Temperature

## Internal Energy

Which rock has a higher internal energy?


## Larger Rock More mass means larger total energy

## Internal Energy

Which has more internal energy?


Burning Match


Ice Sculpture

More Mass = Larger Total Energy

## Heat

## Heat is the transfer of thermal energy

Always flows from hot to cold


## Heat Flow

## Which is correct?



Heat flows from the hand to the ice cube

Heat flows from the ice cube to the hand

## Heat Flow

## Why does heat flow?

Fast moving particles collide with slow moving particles and increase their velocity, kinetic energy, and temperature


## Energy is Energy


r/NoStupidQuestions
MrWaterplant 3.0 k points 6 days ago
If kinetic energy is converted into thermal energy, how hard do I have to slap a chicken to cook it?

## Lesson Takeaways

$\square$ I can explain the relationship between temperature and molecular kinetic energy
$\square$ I can describe the energies present in an object's total internal energy
I I can convert between Celsius and Kelvin
$\square$ I can describe the nature of molecules when at a temperature of absolute zero
$\square$ I can explain the difference between temperature, internal energy, and heat

## Specific Heat

IB PHYSICS | THERMAL PHYSICS

## Conductors and Insulators

## Label this image

Conductor


## Conductor

A material through which energy can be easily transferred as heat

## Insulator

A material that transfers energy poorly

## Specific Heat

## Energy required to raise the temperature of 1 kg of a substance by 1 K

Specific Heat of Copper:


## Specific Heat

## The Lower the number, the less energy

 it takes to heat up1) Which substance take the most energy to heat up?

## Water

2) Which substance take the least energy to heat up?

| Material | Specific Heat <br> $\left(\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right)$ |
| :---: | :---: |
| Aluminum | 910 |
| Copper | 390 |
| Iron | 448 |
| Lead | 130 |
| $\rightarrow$ Water | 4180 |
| Air | 1000 |
| Dry Earth | 1250 |

## Specific Heat

Which metal will heat up faster, Aluminum or Iron?

| Material | Specific Heat <br> $\left(\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}\right)$ |
| :---: | :---: |
| Aluminum | $\rightarrow 910$ |$|$| Copper | 390 |
| :---: | :---: |
| Iron | $\rightarrow 448$ |
| Lead | 130 |
| Water | 4180 |
| Air | 1000 |
| Dry Earth | 1250 |



## Specific Heat

If Iron heats up faster based on its specific heat, then why do aluminum fry pans heat up faster? more mass


Aluminum Skillet
$\mathrm{C}=910 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$


> Iron Skillet
> $\mathrm{C}=448 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

## Specific Heat Equations

| Quantity | Symbol | Unit | $Q=m c \Delta T$ |
| :---: | :---: | :---: | :---: |
| Heat <br> Energy | $Q$ | $[\mathrm{~J}]$ |  |
| Mass | $m$ | $[\mathrm{~kg}]$ | $\left[\mathrm{kg} \mathrm{g}^{-1} \mathrm{~K}^{-1}\right]$ |
| Specific <br> Heat | $C$ | $[\mathrm{~K}]$ or $\left[{ }^{\circ} \mathrm{C}\right]$ |  |

## Specific Heat Calculations

How much energy is needed to increase the temperature of 0.755 kg of iron 20 K ?

$$
\begin{array}{r}
Q=m c \Delta T=(0.755)(448)(20) \\
Q=6,765 \mathrm{~J}
\end{array}
$$

How much energy must a refrigerator absorb from 0.225 kg of water to decrease the temperature of the water from $35^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ ?

| Material | Specific Heat <br> $\left(\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right)$ |
| :---: | :---: |
| Aluminum | 910 |
| Copper | 390 |
| Iron | 448 |
| Lead | 130 |
| Water | 4180 |
| Air | 1000 |
| Dry Earth | 1250 |

$$
Q=m c \Delta T=(0.225)(4180)(5-35)
$$

$$
Q=-28,215 \mathrm{~J}
$$

## More Specific Heat Calculations

Air has a density of $1.3 \mathrm{~kg} \mathrm{~m}^{-3}$ and a specific heat capacity of $1000 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. If 500 kJ was transferred to a room of volume $80 \mathrm{~m}^{3}$, what was the temperature rise?

$$
\begin{aligned}
Q & =500,000 \mathrm{~J} \\
c & =1000 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \\
m & =D \times V=(1.3)(80)=104 \mathrm{~kg}
\end{aligned}
$$

$$
\Delta T=\frac{Q}{m c}=\frac{500,000}{(104)(1,000)}
$$

## $\Delta T=4.81 \mathrm{~K}$

How long will it take a 2.20 kW kettle to raise the temperature of 800 g of water from $16.0^{\circ} \mathrm{C}$ to its boiling point if the specific heat capacity of water is $4180 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ ?

$$
\begin{aligned}
& Q=m c \Delta T=(0.8)(4180)(100-16)=280,896 \mathrm{~J} \\
& 2.2 \mathrm{~kW}=2,200 \mathrm{~W}=2,200 \mathrm{~J} \mathrm{~s}^{-1} \quad \frac{280,896 \mathrm{~J}}{2,200 \mathrm{~J} \mathrm{~s}^{-1}}=128 \mathrm{~S}
\end{aligned}
$$

## Conservation of Heat

If our system is closed to the surroundings, heat must be conserved

$m_{1}=$
Mass of calorimeter

$m_{3}=$
Mass of calorimeter, water, and metal block

Heat energy lost by the metal


Heat energy gained by the water

## Conservation of Heat

Heat energy gained by the water = heat energy lost by the metal
If you have 0.05 kg of water at $20^{\circ} \mathrm{C}$ and you put in 0.031 kg of an unknown substance that is originally $100^{\circ} \mathrm{C}$, you measure that the final temp of everything is $25^{\circ} \mathrm{C}$. What is the unknown metal?

Step 1: Find the Heat Energy of the Water

## Specific Heat of Water

$4180 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
$Q=m c \Delta T=(0.05)(4180)(25-20)$

$$
Q=1,045 \mathrm{~J}
$$

## Conservation of Heat

Heat energy gained by the water = heat energy lost by the metal If you have 0.05 kg of water at $20^{\circ} \mathrm{C}$ and you put in 0.031 kg of an unknown substance that is originally $100^{\circ} \mathrm{C}$, you measure that the final temp of everything is $25^{\circ} \mathrm{C}$. What is the unknown metal?

Step 2: Using the heat energy step one. Find mystery specific heat

$$
1,045 \mathrm{~J}=m c \Delta T=(0.031)(c)(100-25)
$$

$$
c=449 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}
$$

| Specific Heat (J/kg*K) |  |
| :--- | :--- |
| Water (liquid) | 4190 |
| Steam | 1870 |
| Ammonia (gas) | 2060 |
| Ethanol (liquid) | 2440 |
| Aluminum | 897 |
| Carbon (graphite) | 709 |
| Copper | 390 |
| Gold | 129 |
| Iron | 448 |
| Mercury | 140 |
| Lead | 129 |
| Silver | 234 |

## Lesson Takeaways

$\square$ I can define specific heat capacity with proper units
$\square$ I can describe the effect of larger or smaller specific heat values
$\square$ I can relate specific heat capacity to the heat energy and temperature change
$\square$ I can describe how a calorimeter uses the conservation of heat to study a material's specific heat

# Latent Heat and Heating Curves 

IB PHYSICS | THERMAL PHYSICS

## Review of Specific Heat

| Quantity | Symbol | Unit | $Q=m C \Delta T$ |
| :---: | :---: | :---: | :---: |
| Heat <br> Energy | Q | $[\mathrm{J}]$ |  |
| Mass | m | $[\mathrm{kg}]$ |  |
| Specific <br> Heat | c | $\left[\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}\right]$ |  |

Change in
Temp

$$
\Delta T \quad K \text { or }{ }^{\circ} \mathrm{C}
$$

## Calculating Heat Transfer

How much heat energy is required to heat up 2 kg of liquid water from its freezing point to its boiling point?

$$
\begin{array}{r}
Q=m c \Delta T=(2)(4180)(100-0) \\
Q=836,000 \mathrm{~J}
\end{array}
$$

$4180 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$



## Heating Curve



## Why a Plateau?



Bonds are breaking as solid changes to liquid and then again when liquid changes to gas. This takes time!

## Adding Heat | Internal Energy

All heat added becomes internal energy

$$
E_{\mathrm{INT}}=E_{\mathrm{K}}+E_{\mathrm{P}}
$$

Changing the temperature of the solid, liquid, or gas?

## Changing $\mathrm{E}_{\mathrm{K}}$ (Kinetic Energy)

Causing the substance to change phases?
Changing $E_{p}$ (Potential Energy)

## Specific Latent Heat

Specific Latent Heat is the amount energy transferred when 1 kg of the substance changes phase at a constant temp.

## Melting or Freezing

## Boiling or Condensing

Latent Heat of Fusion
Latent Heat of Vaporization

Specific Latent Heat for Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ :
Latent Heat of Fusion
$334,000 \mathrm{~J} \mathrm{~kg}^{-1}$
Latent Heat of Vaporization
$2,260,000 \mathrm{~J} \mathrm{~kg}^{-1}$


## Specific Latent Heat Equation

| Quantity | Symbol | Unit |
| :---: | :---: | :---: |
| Heat <br> Energy | $Q$ | $[\mathrm{~J}]$ |
| Mass | $m$ | $[\mathrm{~kg}]$ |
| Specific <br> Latent Heat | $L$ | $\left[\mathrm{~J} \mathrm{~kg}^{-1}\right]$ |

## $\mathrm{Q}=m L$

*This equation works for heat energy gained as well as heat energy lost*

## Heating Curve



Heat Added

## Heating Curve



## Heating Curve



## Heating Curve



## Try This...

If the latent heat of fusion of a certain kind of chocolate is $160,000 \mathrm{~J} \mathrm{~kg}^{-1}$, how much thermal energy is removed from you when a 10 g bar of chocolate melts in your mouth?


## $\mathrm{Q}=m L=(0.01 \mathrm{~kg})\left(160,000 \mathrm{~J} \mathrm{~kg}^{-1}\right)$

$$
Q=1,600 \mathrm{~J}
$$

## Specific Heat Combined

Heat Added

## Try This...

How much heat is needed to transform 0.5 kg of ice at $-20^{\circ} \mathrm{C}$ into water at $50^{\circ} \mathrm{C}$ ?


Heat Added

$$
\begin{array}{cc}
\Delta T=0^{\circ} \mathrm{C}-\left(-20^{\circ} \mathrm{C}\right) & \Delta T=50^{\circ} \mathrm{C}-0^{\circ} \mathrm{C} \\
Q=(0.5)(2090)(20)+(0.5)(334,000)+(0.5)(4180)(50) \\
20,900 & 167,000
\end{array}
$$

## $Q=292,000 \mathrm{~J}$

## Evaporation vs Boiling

## Evaporation:

- Occurs only at the surface of a liquid
- Can occur at any temperature


Some molecules have a KE high enough to escape and become a gas


When these faster molecules are lost, the average KE of the liquid decreases, resulting in evaporative cooling

## Boiling:

- Bubbles form throughout liquid
- Occurs at a precise temperature


KE is high enough for molecules to form bubbles within the liquid

## Example IB Questions

10. A solid piece of tungsten melts into liquid without a change in temperature. Which of the following is correct for the molecules in the liquid phase compared with the molecules in the solid phase?

|  | Kinetic energy | Potential energy |
| :---: | :---: | :---: |
| A. | same | greater |
| B. | same | same |
| C. | greater | greater |
| D. | greater | same |
|  |  |  |

Changing the temperature of the solid, liquid, or gas?
Changing $\mathrm{E}_{\mathrm{K}}$ (Kinetic Energy)
Causing the substance to change phases?
Changing $\mathrm{E}_{\mathrm{p}}$ (Potential Energy)
11. The specific latent heat of a substance is defined as the energy required at constant temperature to
A. change the phase.
B. change the phase of 1 kg .
C. change the phase of $1 \mathrm{~m}^{3}$.

$$
\mathrm{L} \rightarrow\left[\mathrm{~J} \mathrm{~kg}^{-1}\right]
$$

D. change the phase of 1 kg every second.

## Try This...

How much heat is needed to transform 1.4 kg of water at $23^{\circ} \mathrm{C}$ into water vapor at $120^{\circ} \mathrm{C}$ ?


Heat Added

| Specific Heat of Water Vapor | $2000 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ |
| :--- | :--- |
| Specific Heat of Water | $4180 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ |
| Latent Heat of Fusion | $334,000 \mathrm{~J} \mathrm{~kg}$ |
| Latent Heat of Vaporization | $2,260,000 \mathrm{~J} \mathrm{~kg}$ |

$$
\begin{gathered}
\begin{array}{c}
\Delta T=100^{\circ} \mathrm{C}-23^{\circ} \mathrm{C}
\end{array} \\
Q=\begin{array}{c}
\Delta T=120^{\circ} \mathrm{C}-100^{\circ} \mathrm{C} \\
(1.4)(4180)(77)+(1.4)(2,260,000)+(1.4)(2000)(20) \\
450,604
\end{array} \frac{3,164,000}{56,000} \\
Q=3,670,604 \mathrm{~J}
\end{gathered}
$$

## Lesson Takeaways

$\square$ I can describe the features of a heating curve and why it plateaus during phase changes
$\square$ I can define specific latent heat with proper units
$\square$ I can calculate the heat required to cause a certain amount of a substance to change phases
$\square$ I can compare the processes of evaporation and boiling

# Kinetic Molecular Theory 

IB PHYSICS | THERMAL PHYSICS

## Kinetic Theory of Gases

## Assumptions:

- Large \# of identical molecules
- Volume of molecules is negligible
- Motion is random
- No forces between molecules
- All collisions are elastic


Kinetic Energy is conserved

If these assumptions are true we have an

## Ideal Gas



## Review of Momentum / Collisions

What is the force of this ball on the wall?
Impulse $=F \Delta t=\Delta p$

$$
\Delta v=16 \mathrm{~ms}^{-1}
$$

$$
F=\frac{\Delta p}{\Delta t}=\frac{m \Delta v}{\Delta t}=\frac{(5)(16)}{(0.2)}
$$

$$
v=-8 \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
F=400 \mathrm{~N}
$$

$$
\begin{aligned}
& \mathrm{m}=5 \mathrm{~kg} \\
& \Delta \mathrm{t}=0.2 \mathrm{~s}
\end{aligned}
$$

## Pressure

When many molecules collide with the sides of a container it is measured as pressure

| Quantity | Symbol | Unit |  |
| :---: | :---: | :---: | :---: |
| Force | F | [N] | $p=\frac{-}{A}$ |
| Area | A | [ $\mathrm{m}^{2}$ ] |  |
| Pressure | $p$ | $\left[\mathrm{N} \mathrm{m}^{-2}\right]$ | Pa] Pascal |

## A brief interlude...



## Units of Pressure

There are several different units used to measure pressure of a gas

## $1 \mathrm{~atm}=101,325 \mathrm{~Pa}=760$ Torr $=760 \mathrm{~mm} \mathrm{Hg}$ <br> 100 kPa is a pretty good approximation

## Atmospheric Pressure

What is the force from atmospheric pressure on this doormat?

$$
\left(101,325 \mathrm{~N} \mathrm{~m}^{-2}\right)\left(0.33 \mathrm{~m}^{2}\right)
$$

$$
F=33,100 \mathrm{~N}
$$

$0.33 \mathrm{~m}^{2}$

## Temperature Review

Measure of how hot or cold something feels
Temperature is the average kinetic energy of the molecules of a substance


| Kelvin Scale (K) |
| :---: |
| Absolute |
| Temperature |


|  | K | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| The boiling point of water | 373,15 | 100 |
|  | 363,15 | 90 |
|  | 353,15 | 80 |
|  | 343,15 | 70 |
|  | 333,15 | 60 |
|  | 323,15 | 50 |
|  | 313,15 | 40 |
|  | 303,15 | 30 |
|  | 293,15 | 20 |
|  | 283,15 | 10 |
| The freezing point of water | 273,15 | 0 |
|  | 263,15 | -10 |
|  | 253,15 | -20 |
|  | 243,15 | -30 |
|  | 233,15 | -40 |
|  | 223,15 | -50 |
|  | 213,15 | -60 |
|  | 203,15 | -70 |
|  | 193,15 | -80 |
|  | 183,15 | -90 |
| Absolute zero |  | -273 |

## Average Kinetic Energy

$$
\bar{E}_{K}=\frac{3}{2} k_{B} T \quad \begin{aligned}
& k_{B} \rightarrow \text { Boltzmann's constant } \\
& k_{B}=1.38 \times 10^{-23} J K^{-1}
\end{aligned}
$$

## Quantity

Symbol
Unit
Average
Absolute
Temperature
T
[K]

## IB Physics Data Booklet

| Sub-topic 3.1 - Thermal concepts | Sub-topic 3.2 - Modelling a gas |
| :--- | :--- |
| $Q=m c \Delta T$ | $p=\frac{F}{A}$ |
| $Q=m L$ | $n=\frac{N}{N_{\mathrm{A}}}$ <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> $V=n R T$ <br> $\bar{E}_{\mathrm{K}}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{2} \frac{R}{N_{\mathrm{A}}} T$ |


| Quantity | Symbol | Approximate value |
| :--- | :---: | :--- |
| Acceleration of free fall (Earth's surface) | $g$ | $9.81 \mathrm{~m} \mathrm{~s}^{-2}$ |
| Gravitational constant | $G$ | $6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$ |
| Avogadro's constant | $N_{\mathrm{A}}$ | $6.02 \times 10^{23} \mathrm{~mol}^{-1}$ |
| Gas constant | $R$ | $8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ |
| Boltzmann's constant | $k_{\mathrm{B}}$ | $1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ |

## Try This | 1

Calculate the average translational kinetic energy of molecules in the air at $27^{\circ} \mathrm{C}$

$$
\begin{aligned}
& k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& T=27^{\circ} \mathrm{C}+273=300 \mathrm{~K} \\
& \bar{E}_{k}=\frac{3}{2} k_{B} T=\frac{3}{2}\left(1.38 \times 10^{-23}\right)(300)
\end{aligned}
$$

$$
\bar{E}_{k}=6.21 \times 10^{-21} \mathrm{~J}
$$

## What is Kinetic Energy?

$$
\bar{E}_{K}=\frac{3}{2} k_{B} T \quad \begin{aligned}
& k_{B} \rightarrow \text { Boltzmann's constant } \\
& k_{B}=1.38 \times 10^{-23} J K^{-1}
\end{aligned}
$$

$$
\bar{E}_{K}=\frac{1}{2} m v^{2}
$$

## Try This | 2

Calculate the average speed for oxygen molecules at $0^{\circ} \mathrm{C}$. (the mass of an oxygen molecule is $5.32 \times 10^{-26} \mathrm{~kg}$ )

$$
m=5.32 \times 10^{-26} \mathrm{~kg}
$$

$$
k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}
$$

$$
\bar{E}_{k}=\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}
$$

$\frac{3}{2}\left(1.38 \times 10^{-23}\right)(273)=\frac{1}{2}\left(5.32 \times 10^{-26}\right) v^{2}$
$5.62 \times 10^{-21} \mathrm{~J}=\frac{1}{2}\left(5.32 \times 10^{-26}\right) v^{2}$

## Which molecules move faster?

$\mathrm{H}_{2}$ gas at $23^{\circ} \mathrm{C}$

$$
\bar{E}_{k}=\frac{1}{2} m v^{2}
$$

If the gases have the same kinetic energy (temp), the lighter one must be moving faster
1

$\mathrm{O}_{2}$ gas at $23^{\circ} \mathrm{C}$
1.01

8
0

## Lesson Takeaways

$\square$ I can describe the conditions necessary for a substance to be considered an ideal gas
I can define pressure with appropriate fundamental and derived units

I can relate average molecular kinetic energy with absolute temperature
$\square$ I can calculate the average molecule speed for a molecule at a certain temperature
$\square$ I can discuss how the mass of a molecule changes its overall speed at a given temperature

## The Mole

## IB PHYSICS | THERMAL PHYSICS

## Grouping Items

We can use many different terms to describe the amount of substance.

A pair of shoes 2 shoes

## BONUS!

A Baker's Dozen $=13$

A Score $=20$

A Gross = 144

## Counting Atoms

The primary counting unit for atoms is called
The Mole

$$
1 \text { mole }=6.02 \times 10^{23}=\mathrm{N}_{\mathrm{A}}
$$

This is also called Avogadro's Number named after the scientist who first proposed this concept


## How Big is a Mole??



## 602,000,000,000,000,000,000,000

## How Big is a Mole??

## A Mole of Moles

What would happen if you were to gather a mole (unit of measurement) of moles (the small furry critter) in one place?
-Sean Rice

## Things get a bit gruesome

First, some definitions. A mole is a unit. It's not a typical unit, though. It's really just a numberlike "dozen" or "billion." If you have a mole of something, it means you have $602,214,129,000,000,000,000,000$ of them (usually written $6.022 \times 10^{23}$ ). It's such a big number because it's used for counting numbers of molecules, which there are a lot of.


THERE ARE TOO MANY MOLECVLES.

Taken from the book "What if?" by
Randall Munroe

SERIOUS SCIENTIFIC ANSWERS 1o Absurd Hypolleticicl Qunstions
 what if?


RANDALL MUNROE creotor of xkcd

## Using Moles in Chemistry

Atoms don't weigh very much on their own:

$$
\begin{aligned}
& 1 \text { Carbon Atom }=1.9927 \times 10^{-23} \mathrm{~g} \\
& 0.000000000000000000000019927 \mathrm{~g}
\end{aligned}
$$

1 mole of Carbon Atoms =
$\left(1.9927 \times 10^{-23} \mathrm{~g}\right) \times\left(6.02 \times 10^{23}\right)=\sim 12 \mathrm{~g}$
Where else have you seen this number for Carbon?


## Example IB Questions

10. The mole is defined as
A. $\frac{1}{12}$ the mass of an atom of the isotope carbon-12.
B. the amount of a substance that contains as many elementary entities as the number of atoms in 12 g of the isotope carbon- 12 .
C. the mass of one atom of the isotope carbon-12.
D. the amount of a substance that contains as many nuclei as the number of nuclei in 12 g of the isotope carbon-12.

## Molar Mass

Molar Mass - the mass of 1 mole of a substance

## Unit $\quad \mathrm{g} \mathrm{mol}^{-1}$



Molar mass of $\mathrm{N}=14.01 \mathrm{~g} \mathrm{~mol}^{-1}$
Molar mass of $S=32.07 \mathrm{~g} \mathrm{~mol}^{-1}$

## Molar Mass

1 mole of copper can be represented by this stack of pure copper pennies

How many atoms are in 1 mole of copper?
$6.02 \times 10^{23}$ atoms


## Molar Mass

1 mole of copper can be represented by this stack of pure copper pennies

What is the mass of one mole of copper?
63.55 g


## Molar Mass

1 mole of copper can be represented by this stack of pure copper pennies

What is the mass of one atom of copper?
$\frac{63.55 \mathrm{~g}}{6.02 \times 10^{23} \text { atoms }}=\mathbf{1 . 0 5} \times \mathbf{1 0}^{-\mathbf{2 2}} \mathbf{g}$

Copper
63.55
$+2,1$

## More than one mole...

How much mass would 3 moles of Copper have?

| 29 and <br> cu <br> coper <br> 63.55 <br> $+2,1$ $3 \mathrm{~mol} \times 63.55 \mathrm{~g} \mathrm{~mol}^{-1}=$$\quad 190.65 \mathrm{~g}$ |
| :--- |

How many moles are in 28 g of Nitrogen?


Nitrogen
14.01
$\infty$-3

## Example IB Questions

11. What is the mass of carbon- 12 that contains the same number of atoms as 14 g of silicon- 28 ?
A. 6 g
$\begin{gathered}\text { B. }{ }^{12 g} \\ \text { c. } 14 \mathrm{~g}\end{gathered} \frac{14 \mathrm{~g}}{28 \mathrm{~g} \mathrm{~mol}^{-1}}=0.5 \mathrm{~mol}$

## $0.5 \mathrm{~mol} \times 12 \mathrm{~g} \mathrm{~mol}^{-1}=\mathbf{6} \mathbf{g}$

11. A sample contains 4 g of helium and 20 g of neon. The mass number of helium is 4 and the mass number of neon is 20 .

What is the ratio $\frac{\text { number of atoms of neon }}{\text { number of atoms of helium }}$ ?
A. 0.2
B. 1
C. 5
D. 80

$$
\frac{4 \mathrm{~g}}{4 \mathrm{~g} \mathrm{~mol}^{-1}}=1 \mathrm{~mol}
$$

$$
\frac{20 \mathrm{~g}}{20 \mathrm{~g} \mathrm{~mol}^{-1}}=1 \mathrm{~mol}
$$

## More than one atom...



Mg

$(1 \times 24.31)+(2 \times 14.01)+(6 \times 16.00)$ $=148.33 \mathrm{~g} \mathrm{~mol}^{-1}$

## Lesson Takeaways

$\square$ I can describe the importance of having a large quantity like the "mole" defined
$\square$ I can use the average atomic weight of an element or compound to convert between mass and moles and numbers of atoms

## Gas Laws

## IB PHYSICS | THERMAL PHYSICS

## Ideal Gas

## Assumptions:

No longer ideal when...

- Large \# of identical molecules
- Volume of molecules is negligible
- Motion is random
- No forces between molecules
- All collisions are elastic

- Close to Phase Change
- All internal energy is from $\mathrm{E}_{\mathrm{k}}$


## Boyle's Law | Volume and Pressure

(1) Volume © Pressure

## $p \propto \frac{1}{V}$




## Boyle's Law | Volume and Pressure

When diaphragm contracts the lung volume increases, decreasing the air pressure inside. With a pressure differential, air flows into the lungs (high pressure to low pressure)

Inspiration


Expiration


## Pressure Law | Temp and Pressure

(4) Temperature (4) Pressure $\quad p \propto T$



## Pressure Law | Temp and Pressure



When you spray, the pressure decreases dramatically and the temperature drops


If temperature exceeds a certain amount, the increasing pressure could make a pressurized container explode!

## Charles's Law | Temp and Volume

( $\uparrow$ Temperature $\uparrow$ Volume $\quad V \propto T$



## Charles's Law | Temp and Volume



## Ideal Gas Law

## $p \times 1$ <br> $p \propto T \quad V \propto T$

$p V$

$$
n R T
$$

## Ideal Gas Law

## Quantity

Symbol
Unit

## $p V=n R T$

Pressure
$p$
[Pa] [atm]
Volume
$V \quad\left[\mathrm{~m}^{3}\right] \quad[\mathrm{L}]$
Amount $n$ [mol]
Temperature
$T \quad[\mathrm{~K}]$
Gas Constant

$$
R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

## IB Physics Data Booklet

| Sub-topic 3.1 - Thermal concepts | Sub-topic 3.2 - Modelling a gas |
| :--- | :--- |
| $Q=m c \Delta T$ | $p=\frac{F}{A}$ |
| $Q=m L$ | $n=\frac{N}{N_{\mathrm{A}}}$ |
|  | $p V=n R T$ |
|  |  |
|  | $\bar{E}_{\mathrm{K}}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{2} \frac{R}{N_{\mathrm{A}}} T$ |


| Quantity | Symbol | Approximate value |
| :--- | :---: | :--- |
| Acceleration of free fall (Earth's surface) | $g$ | $9.81 \mathrm{~m} \mathrm{~s}^{-2}$ |
| Gravitational constant | $G$ | $6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$ |
| Avogadro's constant | $N_{\mathrm{A}}$ | $6.02 \times 10^{23} \mathrm{~mol}^{-1}$ |
| Gas constant | $R$ | $8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ |
| Boltzmann's constant | $k_{\mathrm{B}}$ | $1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ |

## Try This

What is the pressure of 23 mol of a gas behaving ideally in a $0.25 \mathrm{~m}^{3}$ container at 310 K ?

$$
\begin{aligned}
p & =? \\
V & =0.25 \mathrm{~m}^{3} \\
n & =23 \mathrm{~mol} \\
R & =8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
T & =310 \mathrm{~K}
\end{aligned}
$$

$$
p V=n R T
$$

$$
p(0.25)=(23)(8.31)(310)
$$

$$
p=237,000 \mathrm{~Pa}
$$

## Change in Volume

A fixed mass of an ideal gas has a volume of $0.14 \mathrm{~m}^{3}$ at 301 K . If its temperature is increased to 365 K at the same pressure, what is its new volume, $\mathrm{V}_{2}$ ?
$p V=n R T$
Rearrange so constants are on one side

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \Rightarrow \frac{0.14 \mathrm{~m}^{3}}{301 \mathrm{~K}}=\frac{V_{2}}{365 \mathrm{~K}}
$$

$$
\frac{V}{T}=\frac{n R}{p}
$$

$$
V_{2}=0.17 \mathrm{~m}^{3}
$$

## Try This

A sample of ammonia is found to occupy 0.250 L under laboratory conditions of $27^{\circ} \mathrm{C}$ and 0.850 atm . Find the volume of this sample at $0^{\circ} \mathrm{C}$ and 1.00 atm .

$$
p V=n R T \quad \frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}
$$

Rearrange so constants
$\frac{p V}{T}=n R$

$$
\frac{(0.850)(0.250)}{(27+273)}=\frac{(1.00)\left(V_{2}\right)}{(0+273)}
$$

$$
V_{2}=0.19 L
$$

## Draw these graphs

## $p V=n R T$





## Related Constants

Gas Constant
$R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\frac{R}{k_{B}}=\frac{8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}{1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& \text { Boltzmann' s constant } \\
& k_{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1}
\end{aligned}
$$

## Average Kinetic Energy

$$
\bar{E}_{K}=\frac{3}{2} \underset{\uparrow}{k_{B} T} T=\frac{3}{2} \frac{R}{N_{A}} T
$$

## Same Constant Value

Boltzmann' s constant $k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$

Gas Constant
$R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

## IB Physics Data Booklet

| Sub-topic 3.1 - Thermal concepts | Sub-topic 3.2 - Modelling a gas |
| :--- | :--- |
| $Q=m c \Delta T$ | $p=\frac{F}{A}$ |
| $Q=m L$ | $n=\frac{N}{N_{\mathrm{A}}}$ |
|  | $p V=n R T$ |
|  | $\bar{E}_{\mathrm{K}}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{2} \frac{R}{N_{\mathrm{A}}} T$ |


| Quantity | Symbol | Approximate value |
| :--- | :---: | :--- |
| Acceleration of free fall (Earth's surface) | $g$ | $9.81 \mathrm{~m} \mathrm{~s}^{-2}$ |
| Gravitational constant | $G$ | $6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$ |
| Avogadro's constant | $N_{\mathrm{A}}$ | $6.02 \times 10^{23} \mathrm{~mol}^{-1}$ |
| Gas constant | $R$ | $8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ |
| Boltzmann's constant | $k_{\mathrm{B}}$ | $1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ |

## Lesson Takeaways

$\square$ I can identify conditions when a substance is no longer considered an ideal gas
I I can describe the relationships between volume, temperature, and pressure in an ideal gas
$\square$ I can use the Ideal Gas Law to solve for pressure, volume, amount, or temperature
$\square$ I can use the Ideal Gas Law to describe how changing one or more variable(s) would affect another

