Thermal Physics IB Physics Content Guide

Big Ideas

- The macroscopic effects of volume, pressure, and temperature can be understood with a microscopic model
- Kinetic Energy on a molecular level is observed as temperature and heat
- The heat required to change the temperature or phase of a material is a property of the material itself
- The properties of an ideal gas are proportional to each other and can be calculated under certain conditions

Content Objectives

1 – Heat vs Temperature

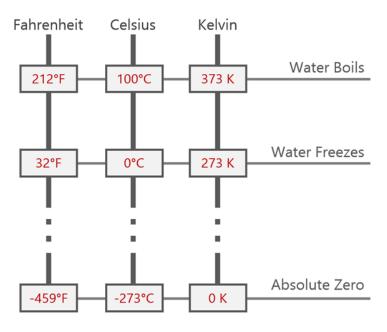
I can explain the relationship between temperature and molecular kinetic energy		
I can describe the energies present in an object's total internal energy		
I can convert between Celsius and Kelvin		
I can describe the nature of molecules when at a temperature of absolute zero		
I can compare temperature (average KE) and heat (total KE)		
I can describe the molecular process that allows heat to flow		

2 – Specific Heat

I can define specific heat capacity with proper units		
I can describe the effect of larger or smaller specific heat values		
I can relate specific heat capacity to the heat energy and temperature change		
I can describe how a calorimeter uses the conservation of heat to study a material's specific heat		
I can experimentally determine the specific heat capacity of a material		

3 – Latent Heat

I can identify key features in a material's heating curve		
I can describe why a heating curve plateaus during phase changes		
I can describe the different ways that the heat added to a system can become internal energy		
I can define specific latent heat with proper units		
I can calculate the heat required to cause a certain amount of a substance to change phases		
I can compare the processes of evaporation and boiling		


4 – Kinetic Gas Theory and The Mole

I can describe the conditions necessary for a substance to be considered an ideal gas	
I can define pressure with appropriate fundamental and derived units	
I can relate average molecular kinetic energy with absolute temperature	
I can calculate the average molecule speed for a molecule at a certain temperature	
I can discuss how the mass of a molecule changes its overall speed at a given temperature	
I can describe the importance of having a large quantity like the "mole" defined	
I can identify the difference between different isotopes of an element	
I can calculate an atom's mass number when given the number of protons and neutrons	
I can use the average atomic weight of an element to convert between mass and moles	

5 – Gas Laws

I can identify conditions when a substance is no longer considered an ideal gas		
I can describe the relationship between volume and pressure for an ideal gas (Boyle's Law)		
I can describe the relationship between temperature and pressure for an ideal gas (Pressure Law)		
I can describe the relationship between temperature and volume for an ideal gas (Charles's Law)		
I can use the Ideal Gas Law to solve for pressure, volume, amount, or temperature		
I can use the Ideal Gas Law to describe how changing one or more variable(s) would affect another		

Thermal Physics

Shelving Guide

Data Booklet Equation:

Temperature (K) = Temperature ($^{\circ}$ C) + 273

Conditions for Absolute Zero:

Molecules stop moving. This is the coldest possible temperature.

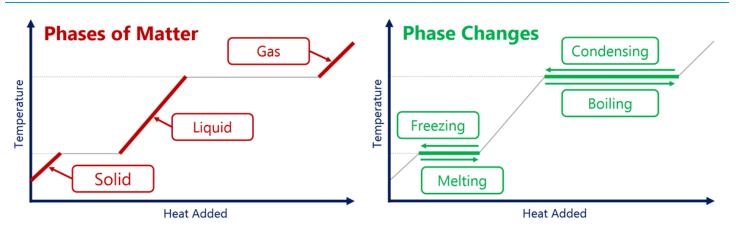
Absolute Zero = 0 K = -273 K

Specific Heat Capacity and Specific Latent Heat

Variable Symbol	Unit
Q	J
m	kg
С	J kg ⁻¹ K ⁻¹
ΔΤ	K
L	J kg⁻¹
	Q m c

Kinetic Energy ightarrow Temperature

Data Booklet Equations:


 $Q = mc\Delta T$

$$Q = mL$$

 E_P Potential Energy \rightarrow Phase Change

Heating Curves

Eĸ

Pressure	Variable Symbol	Unit	
Force	F	Ν	
Area	А	m ²	
Pressure	р	N m ⁻²	Ра

Data Booklet Equation:

$$p = \frac{F}{A}$$

Kinetic Theory and Temperature

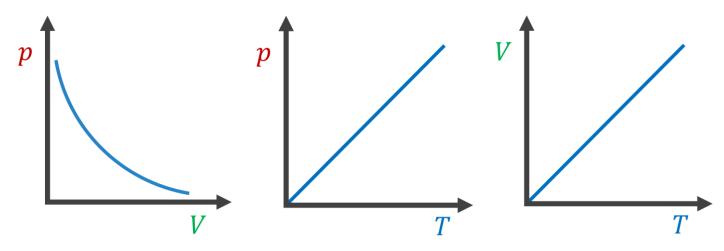
	Variable Symbol	Unit
Average Kinetic Energy	\overline{E}_k	J
Absolute Temperature	Т	K
Boltzmann's Constant	k _b	J K ⁻¹

Data Booklet Equation: $\bar{E}_K = \frac{3}{2}k_BT = \frac{3}{2}\frac{R}{N_A}T$

$$k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

 6.02×10^{23}

Avogadro's Number


NA	
INA	

Ideal Gas Law	Variable Symbol	Unit
Pressure	р	Ра
Volume	V	m⁻³
Number of Molecules	n	mol
Gas Constant	R	J K ⁻¹ mol ⁻¹
Temperature	Т	K

Data Booklet Equations: $pV = nRT \mid R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Conditions for Ideal Gases:

Ideal Gas Relationships

