Thermal Physics IB Physics Content Guide

Big Ideas

- The macroscopic effects of volume, pressure, and temperature can be understood with a microscopic model
- Kinetic Energy on a molecular level is observed as temperature and heat
- The heat required to change the temperature or phase of a material is a property of the material itself
- The properties of an ideal gas are proportional to each other and can be calculated under certain conditions

Content Objectives

1 - Heat vs Temperature

I can explain the relationship between temperature and molecular kinetic energy		
I can describe the energies present in an object's total internal energy		
I can convert between Celsius and Kelvin		
I can describe the nature of molecules when at a temperature of absolute zero		
I can compare temperature (average KE) and heat (total KE)		
I can describe the molecular process that allows heat to flow		

2 - Specific Heat

I can define specific heat capacity with proper units		
I can describe the effect of larger or smaller specific heat values		
I can relate specific heat capacity to the heat energy and temperature change		
I can describe how a calorimeter uses the conservation of heat to study a material's specific heat		
I can experimentally determine the specific heat capacity of a material		

3 - Latent Heat

I can identify key features in a material's heating curve			
I can describe why a heating curve plateaus during phase changes			
I can describe the different ways that the heat added to a system can become internal energy			
I can define specific latent heat with proper units			
I can calculate the heat required to cause a certain amount of a substance to change phases			
I can compare the processes of evaporation and boiling			

4 - Kinetic Gas Theory and The Mole

I can describe the conditions necessary for a substance to be considered an ideal gas		
I can define pressure with appropriate fundamental and derived units		
I can relate average molecular kinetic energy with absolute temperature		
I can calculate the average molecule speed for a molecule at a certain temperature		
I can discuss how the mass of a molecule changes its overall speed at a given temperature		
I can describe the importance of having a large quantity like the "mole" defined		
I can identify the difference between different isotopes of an element		
I can calculate an atom's mass number when given the number of protons and neutrons		
I can use the average atomic weight of an element to convert between mass and moles		

5 - Gas Laws

I can identify conditions when a substance is no longer considered an ideal gas		
I can describe the relationship between volume and pressure for an ideal gas (Boyle's Law)		
I can describe the relationship between temperature and pressure for an ideal gas (Pressure Law)		
I can describe the relationship between temperature and volume for an ideal gas (Charles's Law)		
I can use the Ideal Gas Law to solve for pressure, volume, amount, or temperature		
I can use the Ideal Gas Law to describe how changing one or more variable(s) would affect another		

Thermal Physics

Shelving Guide

Data Booklet Equation:

Temperature $(\mathrm{K})=$ Temperature $\left({ }^{\circ} \mathrm{C}\right)+273$

Conditions for Absolute Zero:

Specific Heat Capacity and Specific Latent Heat

	Variable Symbol	Unit
Heat Energy		
Mass		
Specific Heat Capacity		
Change in Temperature		
Specific Latent Heat		

Data Booklet Equations:

$$
\begin{gathered}
Q=m c \Delta T \\
Q=m L
\end{gathered}
$$

E_{K}

Ep

Heating Curves

Heat Added

Heat Added

Pressure	Variable Symbol	Unit	
Force			
Area			
Pressure			

Data Booklet Equation:

$$
p=\frac{F}{A}
$$

Kinetic Theory and Temperature

	Variable Symbol	Unit
Average Kinetic Energy		
Absolute Temperature		
Boltzmann's Constant		

Data Booklet Equation:

$$
\begin{gathered}
\bar{E}_{K}=\frac{3}{2} k_{B} T=\frac{3}{2} \frac{R}{N_{A}} T \\
k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}
\end{gathered}
$$

Avogadro's Number	N_{A}	

Ideal Gas Law	Variable Symbol	Unit
Pressure		
Volume		
Number of Molecules		
Gas Constant		
Temperature		

Data Booklet Equations:

 $p V=n R T \quad R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ Conditions for Ideal Gases:
Ideal Gas Relationships

