Simple Harmonic Motion

IB PHYSICS | WAVES - SOUND

Warm up

What words would you use to describe the motion of a bobble head doll?

- Oscillating
- Back and Forth
- Repeating
- Etc.

A Mass on a Spring

Simple Harmonic Motion Maximum Equilibrium Position

Minimum

Let's look at the forces...

Force and Displacement

-a

+a

F_{net}

Hooke's Law: $F = \Theta k \Delta x$

Force is opposite to the displacement

Acceleration is in the same direction as the force

F = ma

Why the Negative Sign??

Let's look at this one more time...

When is the force largest? When is the acceleration largest? When is the velocity largest?

Where is the Greatest...

	Displacement	Velocity	Acceleration
C	X		X
B		X	
A	Χ		X

Graphing Displacement vs Time

Energy for SHM

Energy for SHM

Energy for SHM

Acceleration vs Displacement

Velocity vs Displacement

vs Displacement

Properties of SHM

Period is related to Frequency

Period = 1 / Frequency

Sub-topic 4.1 – Oscillations $T = \frac{1}{f}$ Sub-topic 4.2 – Travelling waves $c = f\lambda$ Sub-topic 4.3 – Wave characteristics $I \propto A^2$ $I \propto x^{-2}$ $I = I_0 cos^2 \theta$

Period is related to Frequency

Period = 1 / Frequency

 $f = \frac{1}{T} \qquad T = \frac{1}{f}$

$f = \frac{1}{T}$ Try this...

Taylor Swift's song Shake it Off has a tempo of 160 beats per minute (2.67 Hz) how many seconds are in between each beat (the **period**)

f = 2.67 HzT = ?? $T = \frac{1}{f} = \frac{1}{2.67 Hz} = 0.37 s$

$f = \frac{1}{T}$

Try this...

You are standing on the beach with your feet in the water and notice that a new wave comes crashing in every 4 seconds, what is the **frequency** of these waves?

T = 4 s f = ?? $f = \frac{1}{T} = \frac{1}{4 s} = 0.25 Hz$

A little harder...

You are pushing your younger brother on a swing and you end up pushing 12 times in one minute. What is the period and frequency of the swing?

$$T = \frac{60 \ seconds}{12 \ times} = 5 \ s$$

$$f = \frac{1}{T} = \frac{1}{\frac{5}{5}} = 0.2 \text{ Hz}$$

Lesson Takeaways

- □ I can relate the acceleration of an object in simple harmonic motion to its position
- □ I can graph the displacement, velocity, and acceleration vs time for simple harmonic motion
- I can describe and relate the properties of period and frequency
- □ I can calculate period and frequency from a scenario