Diffraction

IB PHYSICS | WAVES - LIGHT

Diffraction

as the wave goes through the gap it spreads out

the same thing happens if it goes around an obstacle

What would you expect?

You shine a light through two vertical slits in a barrier. What is the resulting image on the screen behind?

Remember Interference?

Constructive

b
Destructive

Diffraction

Destructive

Constructive

Destructive

Double Slit Experiment

IB Physics Data Booklet

Sub-topic 4.1-Oscillations	Sub-topic $4.4-$ Wave behaviour
$T=\frac{1}{f}$	$\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}}$
Sub-topic 4.2 - Travelling waves	$S=\frac{\lambda D}{d}$
$c=f \lambda$	Constructive interference: path difference $=n \lambda$
Sub-topic 4.3 - Wave characteristics	Destructive interference: path difference $=\left(n+\frac{1}{2}\right) \lambda$
$I \propto A^{2}$	
$I \propto x^{-2}$	
$I=I_{0} \cos ^{2} \theta$	

milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}

Double Slit Experiment

As wavelength (λ) increases,

s increases

As gap (d) increases,

s decreases

Try This

Blue laser light of wavelength 450 nm is shone on two slits that are 0.1 mm apart. How far apart are the fringes on a screen placed 5.0 m away?

$$
\begin{aligned}
& \lambda=450 \mathrm{~nm}=450 \times 10^{-9} \mathrm{~m} \\
& \mathrm{~d}=0.1 \mathrm{~mm}=0.1 \times 10^{-3} \mathrm{~m} \\
& \mathrm{D}=5 \mathrm{~m}
\end{aligned}
$$

$$
s=\frac{\left(450 \times 10^{-9}\right)(5)}{\left(0.1 \times 10^{-3}\right)}
$$

$$
s=0.02 \mathrm{~m}
$$

Would red laser light have fringes closer together or farther apart?

As wavelength increases, fringes get farther apart

Lesson Takeaways

\square I can describe how light bends around a boundary
\square I can predict the resulting image from a double slit experiment
\square I can calculate the spacing between bright spots for the double slit experiment
I can conceptually relate band spacing with wavelength and gap distance

