Polarization

IB PHYSICS | WAVES - LIGHT

Light is a Transverse Wave

This isn't the whole story though...

When unpolarized, light can be thought of as oscillating at every perpendicular to the wave's motion

Diagram of a light ray coming out of the page

Polarizers

Unpolarized light loses 50% intensity when passing through a polarizer

Polarized Light

Malus' Law

$$I = I_0 \cos^2 \theta$$

 θ = angle between filters

Same thing as

$$I = I_0 (cos\theta)^2$$

IB Physics Data Booklet

Sub-topic 4.1 – Oscillations	Sub-topic 4.4 – Wave behaviour
$T = \frac{1}{f}$	$\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1}$
Sub-topic 4.2 – Travelling waves	$s = \frac{\lambda D}{d}$
$c = f\lambda$ Sub-topic 4.3 – Wave characteristics	Constructive interference: path difference = $n\lambda$
$I \propto A^2$	Destructive interference: path difference = $(n + \frac{1}{2})\lambda$
$I \propto x^{-2}$	
$I = I_0 cos^2 \theta$	

Loses Intensity Twice

50% loss when unpolarized light is polarized

Equation calculates loss through subsequent filters

Angle Difference

The intensity of plane polarized light, at 40° to the vertical is I_0 . After passing through an analyzer at 60° to the vertical, what is the intensity measured?

$$\theta = 60^{\circ} - 40^{\circ} = 20^{\circ}$$

$$I = I_0 \cos^2(20^\circ) = 0.883 I_0$$

88.3% of the original intensity

Sample IB Question

Polarized light of intensity I_0 is incident on a polarizing filter. The angle between the plane of polarization of the incident light and the transmission plane of the polarizer is θ . Which graph shows how the intensity I of the light transmitted through the polarizer varies with θ ?

Try this Calculation

After passing through one polarized filter, the intensity of vertically polarized light is 60 W m⁻². What is the angle of the analyzer relative to the vertical if the intensity observed is 20 W m⁻²?

What was the intensity of the unpolarized light?

120 W m⁻²

Loses 50% from first filter

This isn't the only way

What about 3D Movies?

Each lens blocks a different image, so each eye gets a different image which the brain interprets as 3D

Lesson Takeaways

- ☐ I can describe the transformation that takes place when unpolarized light is polarized
- ☐ I can describe the interaction between two polarized filters at different orientations
- ☐ I can use Malus's Law to calculate the change in intensity when passing through polarized filters