Polarization

IB PHYSICS | WAVES - LIGHT

Light is a Transverse Wave

This isn't the whole story though...

When unpolarized, light can be thought of as oscillating at every perpendicular to the wave's motion

Diagram of a light ray coming out of the page

Polarizers

Unpolarized light loses 50\% intensity when passing through a polarizer

Polarized Light

Malus' Law

$I=I_{0} \cos ^{2} \theta$

$\theta=$ angle between filters

Same thing as
$I=I_{0}(\cos \theta)^{2}$

IB Physics Data Booklet

Sub-topic 4.1-Oscillations	Sub-topic $4.4-$ Wave behaviour
$T=\frac{1}{f}$	$\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}}$ $s=\frac{\lambda D}{d}$ Sub-topic 4.2 - Travelling waves Constructive interference: path difference $=n \lambda$
$c=f \lambda$	Destructive interference: path difference $=\left(n+\frac{1}{2}\right) \lambda$
Sub-topic 4.3 - Wave characteristics	
$I \propto A^{2}$	
$I \propto x^{-2}$	
$I=I_{0} \cos ^{2} \theta$	

Loses Intensity Twice

$$
I=I_{0} \cos ^{2} \theta
$$

50\% loss when unpolarized light is polarized

Equation calculates loss through subsequent filters

Angle Difference

The intensity of plane polarized light, at 40° to the vertical is I_{0}. After passing through an analyzer at 60° to the vertical, what is the intensity measured?

$$
\begin{aligned}
& \theta=60^{\circ}-40^{\circ}=20^{\circ} \\
& I=I_{0} \cos ^{2}\left(20^{\circ}\right)=0.883 I_{\mathbf{0}}
\end{aligned}
$$

88.3% of the original intensity

Sample IB Question

Polarized light of intensity I_{0} is incident on a polarizing filter. The angle between the plane of polarization of the incident light and the transmission plane of the polarizer is θ. Which graph shows how the intensity I of the light transmitted through the polarizer varies with θ ?

$90^{\circ} \rightarrow$ Intensity $=0$
$\cos ^{2}$ shape

Try this Calculation

After passing through one polarized filter, the intensity of vertically polarized light is $60 \mathrm{~W} \mathrm{~m}^{-2}$. What is the angle of the analyzer relative to the vertical if the intensity observed is $20 \mathrm{~W} \mathrm{~m}^{-2}$?

$$
\begin{array}{lr}
I=I_{0} \cos ^{2} \theta & 20=60(\cos \theta)^{2} \\
I=I_{0}(\cos \theta)^{2} & \theta=\cos ^{-1}\left(\sqrt{\frac{20}{60}}\right. \text { Unpolarized } \\
\text { light }
\end{array}
$$

Polarizer

Analyzer

What was the intensity of the unpolarized light?

$120 \mathrm{~W} \mathrm{~m}^{-2}$

Loses 50\% from first filter

This isn't the only way

What about 3D Movies?

Types of 3D Glasses

Red/Cyan Glasses
 Polarized Active Shutter Glasses
 Glasses

Each lens blocks a different image, so each eye gets a different image which the brain interprets as 3D

Lesson Takeaways

\square I can describe the transformation that takes place when unpolarized light is polarized
I can describe the interaction between two polarized filters at different orientations

I I can use Malus's Law to calculate the change in intensity when passing through polarized filters

