Polarization

IB PHYSICS | WAVES - LIGHT

Light is a Transverse Wave

This isn't the whole story though...

Diagram of a light ray coming out of the page

Polarizers

Polarized Light

Malus' Law

$I=I_{0} \cos ^{2} \theta$

IB Physics Data Booklet

Sub-topic 4.1 - Oscillations	Sub-topic 4.4 - Wave behaviour
$T=\frac{1}{f}$	$\begin{aligned} & \frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}} \\ & s=\frac{\lambda D}{d} \\ & \text { Constructive interference: } \text { path difference }=n \lambda \\ & \text { Destructive interference: } \quad \text { path difference }=\left(n+\frac{1}{2}\right) \lambda \end{aligned}$
Sub-topic 4.2 - Travelling waves	
$c=f \lambda$	
Sub-topic 4.3 - Wave characteristics	
$\begin{aligned} & I \propto A^{2} \\ & I \propto x^{-2} \\ & I=I_{0} \cos ^{2} \theta \end{aligned}$	

Loses Intensity Twice

Angle Difference

The intensity of plane polarized light, at 40° to the vertical is I_{0}. After passing through an analyzer at 60° to the vertical, what is the intensity measured?

Sample IB Question

Polarized light of intensity I_{0} is incident on a polarizing filter. The angle between the plane of polarization of the incident light and the transmission plane of the polarizer is θ. Which graph shows how the intensity I of the light transmitted through the polarizer varies with θ ?

Try this Calculation

After passing through one polarized filter, the intensity of vertically polarized light is $60 \mathrm{~W} \mathrm{~m}^{-2}$. What is the angle of the analyzer relative to the vertical if the intensity observed is $20 \mathrm{~W} \mathrm{~m}^{-2}$?

What was the intensity of the unpolarized light?

This isn't the only way

What about 3D Movies?

Types of 3D Glasses

Red/Cyan Glasses
 Polarized Active Shutter Glasses
 Glasses

Each lens blocks a different image, so each eye gets a different image which the brain interprets as 3D

Lesson Takeaways

\square I can describe the transformation that takes place when unpolarized light is polarized
I can describe the interaction between two polarized filters at different orientations

I I can use Malus's Law to calculate the change in intensity when passing through polarized filters

