Properties of Traveling Waves

IB PHYSICS | WAVES - SOUND

What is a Wave?

What is a Wave?

A wave is a disturbance that carries <u>energy</u> through matter or space

which a wave travels medium

Is the Medium Moving?

The medium particles oscillate back and forth

Two Types of Waves

Properties of a Wave

Properties of a Wave

Property	Symbol	Unit
Amplitude	Α	[m]
Wavelength	λ	[m]

Waves and Energy

$$\uparrow Wavelength = \bigoplus Energy$$
$$\downarrow Wavelength = \bigoplus Energy$$

Label this wave

Can you identify the wave properties from this diagram?

Amplitude? **D** Wavelength? **C**

How Many Waves?

Wavelength is related to frequency

Wave Speed Equation

Speed = Frequency × Wavelength

IB Physics Data Booklet

Sub-topic 4.1 – Oscillations	Sub-topic 4.4 – Wave behaviour
$T = \frac{1}{f}$	$\frac{n_1}{n_2} = \frac{\sin\theta_2}{\sin\theta_1} = \frac{v_2}{v_1}$
Sub-topic 4.2 – Travelling waves	$s = \frac{\lambda D}{d}$
$c = j \lambda$ Sub-topic 4.3 – Wave characteristics	Constructive interference: path difference = $n\lambda$
$I \propto A^2$	Destructive interference: path difference = $(n + \frac{1}{2})\lambda$
$I \propto x^{-2}$	
$I = I_0 \cos^2 \theta$	

*Note: "c" represents the speed of light but the relationship is the same for all wave speeds

Try this...

A piano string vibrates with a frequency of 262 Hz. If these sound waves have a wavelength in the air of 1.30 m, what is the speed of sound?

f = 262 Hz $\lambda = 1.30 m$

$$v = f\lambda = (262)(1.30) = 340.6 m/s$$

v = ??

One Final Question...

The crests of waves passing into a harbor are 2.1 m apart and have an amplitude of 60 cm. 12 waves pass an observer every minute.

What is their frequency? $\frac{12 \ waves}{1 \ min} \times \frac{1 \ min}{60 \ s} = 0.2 \ \frac{waves}{s}$ $f = 0.2 \ Hz$

What is their speed?

 $v = f\lambda$

- = (0.2)(2.1)
 - $= 0.42 m s^{-1}$

Lesson Takeaways

- I can describe how waves carry energy through a medium
- I can compare the properties of transverse and longitudinal waves
- I can read a wave's amplitude, wavelength, period, and frequency from a graph
- □ I can describe the number of complete wavelengths represented in a picture
- □ I can use the wave speed equation to mathematically relate speed, wavelength, and frequency