Properties of Traveling Waves

IB PHYSICS | WAVES - SOUND

What is a Wave?

What is a Wave?

A wave is a disturbance that carries energy through matter or space

matter through which a wave travels

Is the Medium Moving?

The medium particles oscillate back and forth

Two Types of Waves

Transverse

Particles move perpendicular to the wave's motion

Longitudinal

Particles move parallel to the wave's motion

Examples:

- Sound Waves
- Earthquake Waves

Properties of a Wave

Properties of a Wave

Property
Symbol
Amplitude
Wavelength
A
Unit
[m]
λ
[m]

Waves and Energy

$A M$
\uparrow Amplitude $=\uparrow$ Energy
\downarrow Amplitude $=\downarrow$ Energy
\uparrow Wavelength = \downarrow Energy
\downarrow Wavelength = \uparrow Energy

Label this wave

Can you identify the wave properties from this diagram?

Amplitude?
 D
 Wavelength?

How Many Waves?

Wavelength is related to frequency

Longer wavelength

Lower frequency

ANAM
Shorter wavelength Higher frequency

Wave Speed Equation

Speed $=$ Frequency \times Wavelength

$$
\begin{aligned}
& \begin{array}{l}
\text { n } \\
\text { O } \\
E \\
\vdots
\end{array} \\
& \mathrm{~V}=f \\
& \times
\end{aligned}
$$

$\stackrel{y}{5}\left[\mathrm{~m} \mathrm{~s}^{-1}\right]=[\mathrm{Hz}] \times[\mathrm{m}]$

$$
\left[\mathrm{s}^{-1}\right]
$$

IB Physics Data Booklet

Sub-topic 4.1 - Oscillations	Sub-topic 4.4 - Wave behaviour
$T=\frac{1}{f}$	$\begin{aligned} & \frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}} \\ & s=\frac{\lambda D}{d} \end{aligned}$ Constructive interference: path difference $=n \lambda$ Destructive interference: path difference $=\left(n+\frac{1}{2}\right) \lambda$
Sub-topic 4.2 - Travelling waves	
$c=f \lambda$	
Sub-topic 4.3-Wave characteristics	
$\begin{aligned} & I \propto A^{2} \\ & I \propto x^{-2} \\ & I=I_{0} \cos ^{2} \theta \end{aligned}$	

*Note: "c" represents the speed of light but the relationship is the same for all wave speeds

Try this...

A piano string vibrates with a frequency of 262 Hz . If these sound waves have a wavelength in the air of 1.30 m , what is the speed of sound?

$$
\begin{aligned}
& f=262 \mathrm{~Hz} \\
& \lambda=1.30 \mathrm{~m} \quad v=f \lambda=(262)(1.30)=340.6 \mathrm{~m} / \mathrm{s} \\
& v=? ?
\end{aligned}
$$

$$
f=\frac{1}{T} \quad \text { Read a Wave \#1 }
$$

$$
T=\frac{1}{f}
$$

\# of Waves
3
Period

$$
4 \mathrm{~s}
$$

Amplitude
2 m
Frequency
0.25 Hz

$$
f=\frac{1}{T} \quad \text { Read a Wave \#2 }
$$

$$
T=\frac{1}{f}
$$

\# of Waves
1.5

Period
8 s
Amplitude
3 m
Frequency
0.125 Hz

One Final Question...

The crests of waves passing into a harbor are 2.1 m apart and have an amplitude of 60 cm .12 waves pass an observer every minute.

What is their frequency?

$$
\begin{aligned}
\frac{12 \text { waves }}{1 \text { mín}} \times \frac{1 \text { mín }}{60 \mathrm{~s}} & =0.2 \frac{\text { waves }}{s} \\
f & =\mathbf{0 . 2 ~ H z}
\end{aligned}
$$

What is their speed?

$$
\begin{aligned}
v & =f \lambda \\
& =(0.2)(2.1) \\
& =\mathbf{0 . 4 2} \boldsymbol{m} \boldsymbol{s}^{-1}
\end{aligned}
$$

Lesson Takeaways

\square I can describe how waves carry energy through a medium
\square I can compare the properties of transverse and longitudinal waves
\square I can read a wave's amplitude, wavelength, period, and frequency from a graph
\square I can describe the number of complete wavelengths represented in a picture
\square I can use the wave speed equation to mathematically relate speed, wavelength, and frequency

