Calculating Harmonics and Instruments

IB PHYSICS | WAVES - SOUND

Standing Waves Review

Harmonics

Open Pipe Resonance

$$
\begin{gathered}
L= \\
\frac{3}{2} \lambda \\
1 \lambda \\
\frac{1}{2} \lambda
\end{gathered}
$$

Closed Pipe Resonance

$$
\begin{aligned}
& L= \\
& \frac{5}{4} \lambda \\
& \frac{3}{4} \lambda \\
& \frac{1}{4} \lambda
\end{aligned}
$$

Strings make sound too!

wave speed

changes depending on the string tension

Two ways to increase frequency in string:

increase tension

decrease length

String Resonance

Review of End Conditions

Closed Pipe
Node
Antinode

Open Pipe Antinode Antinode

String
Node
Node

All the Harmonics!

Open
 Closed
 String

Remember Pitch and Frequency

High pitched sounds have high frequencies

Low pitched sounds have low frequencies

Making Different Pitches

The lengths are designed for the fundamental frequency

Calculating Frequency | Open Pipes

An open organ pipe is 2.1 m long and the speed of sound in the pipe is $341 \mathrm{~m} / \mathrm{s}$. What is the fundamental frequency of the pipe?

$$
\begin{array}{lr}
\begin{array}{l}
v=f \lambda \\
f=? \\
v=341 \mathrm{~m} \mathrm{~s}^{-1} \\
\lambda=4.2 \mathrm{~m}
\end{array} & =\mathbf{8 1 . 2 \mathbf { H z }}
\end{array}
$$

$$
L=\frac{1}{2} \lambda \rightarrow \lambda=2 L=2(2.1)=4.2 \mathrm{~m}
$$

Resonant String Practice

The note produced on a violin string of length 40 cm produces a wave speed of $250 \mathrm{~m} / \mathrm{s}$. What is the first harmonic of this note?

$$
\begin{array}{ll}
\begin{array}{l}
v=f \lambda \\
f=? \\
v=250 \mathrm{~m} \mathrm{~s}^{-1} \\
\lambda=0.8 \mathrm{~m}^{2}
\end{array} & =\mathbf{3 1 2 . 5} \mathbf{~ H z}
\end{array}
$$

$$
L=\frac{1}{2} \lambda \rightarrow \lambda=2 L=2(0.4)=0.8 \mathrm{~m}
$$

Finding Resonance

Tuning fork

Calculating Frequency | Closed Pipes

You found an unmarked tuning fork in your collection. You notice that the smallest length for resonance is 12 cm . If the speed of sound is $345 \mathrm{~m} / \mathrm{s}$, what is the tuning fork frequency?

$$
\begin{array}{r}
L=\frac{1}{4} \lambda \longrightarrow \lambda=4 L=4(0.12)=0.48 \mathrm{~m} \\
f=\frac{v}{\lambda}=\frac{345}{0.48}=718.75 \mathrm{~Hz}
\end{array}
$$

What should the length of the tube be for the $2^{\text {nd }}$ resonant position?

Lesson Takeaways

\square I can identify and label the node and antinodes on a standing wave diagram
\square I can describe the end conditions and nodes/antinodes for open/closed pipes and vibrating strings
\square I can calculate the wavelength or instrument length of a standing wave for different harmonics

