Speed of Sound

IB PHYSICS | WAVES - SOUND

Speed of Sound Depends on Medium

Medium	Speed of sound $(\mathrm{m} / \mathrm{s})$	Medium	
Gases	Speed of sound $(\mathrm{m} / \mathrm{s})$		
Air $\left(0^{\circ} \mathrm{C}\right)$	331	Liquids at 25 ${ }^{\circ} \mathrm{C}$	
Air $\left(25^{\circ} \mathrm{C}\right)$	346	Sea water	1,490
Air $\left(100^{\circ} \mathrm{C}\right)$	386	Solids	1,530
Helium $\left(0^{\circ} \mathrm{C}\right)$	972	Copper	
Hydrogen $\left(0^{\circ} \mathrm{C}\right)$	1,290	Iron	3,813
Oxygen $\left(0^{\circ} \mathrm{C}\right)$	317	Rubber	5,000

$$
\begin{aligned}
& \operatorname{Air}\left(25^{\circ} \mathrm{C}\right) \\
& 760 \mathrm{mph} \\
& 0.21 \text { miles } / \mathrm{sec}
\end{aligned}
$$

Speed of Sound for Air (at any temp)

$$
v=331 \mathrm{~m} \mathrm{~s}^{-1}+0.6 \times\left(\mathrm{Temp} \mathrm{in}^{\circ} \mathrm{C}\right)
$$

Speed of Sound Depends on Medium

Why does Medium Affect Speed?
molecule spacing

Medium	Speed of sound $(\mathrm{m} / \mathrm{s})$	Medium	Speed of sound $(\mathrm{m} / \mathrm{s})$
Gases	331	Liquids at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$	
Air $\left(0^{\circ} \mathrm{C}\right)$	Water	1,490	
Air $\left(25^{\circ} \mathrm{C}\right)$	346	Sea water	1,530
Air $\left(100^{\circ} \mathrm{C}\right)$	386	Solids	
Helium $\left(0^{\circ} \mathrm{C}\right)$	972	Copper	3,813
Hydrogen $\left(0^{\circ} \mathrm{C}\right)$	1,290	Iron	5,000
0xygen $\left(0^{\circ} \mathrm{C}\right)$	317	Rubber	54

- -7 iron

Do other factors increase speed?

Frequency?
 No

$v=f \times \lambda$

$$
v=f \times \lambda
$$

Amplitude? No
*Independent from all other wave properties

Sound is fast, but not THAT fast...

Timer

$$
v=\frac{d}{t}=\frac{335 \mathrm{~m}}{0.935 \mathrm{~s}}=\mathbf{3 5 8} \mathbf{m ~ s}^{\mathbf{- 1}}
$$

Using the Speed of Sound

You see lightning strike and immediately start counting, once you get to 7 seconds, you hear the boom of thunder. How far away is the storm?

Air ($25^{\circ} \mathrm{C}$)
$346 \mathrm{~m} / \mathrm{s}$
760 mph
0.21 miles/sec

$$
d=v t=(0.21)(7)
$$

$$
=1.47 \text { miles }
$$

Shortcut for Clocking a Storm

As soon as you see lightning strike, start counting...

One one thousand, Two one thousand...
Stop counting as soon as you hear the thunder from that bolt of lightning

Distance in Miles = Time / 5

ECHO.... Echo.... Echo....

When you hear an echo, you are hearing the sound after it has reflected off of an object and returned to your ear

Calculating Distance from an Echo

A saxophonist plays a duet with himself using the echo of the sound in a long pipe. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$ and echo returns 1.3 seconds after the original sound, how long is the pipe?
$v=\frac{d}{t}$
$d=v t=(340)(0.65)=221 m$

How do we locate sounds?

Sound reaches one ear before the other. It also sounds different from different locations due to the shape of our ears.

Lesson Takeaways

\square I can describe why sound travels at different speeds in different media
\square I can calculate how far a distant object is by timing an echo

