Wave Interference

IB PHYSICS | WAVES - SOUND

Interference

When several waves are in the same location, they combine to produce a new wave that is different from the original waves.

After waves pass by one another continue on <u>unchanged</u>

Name that Interference

Constructive Interference

Destructive Interference

Constructive Interference

What is the resulting amplitude when these waves meet?

Destructive Interference

What is the resulting amplitude when these waves meet?

IB Sample Question

Both the waves below are moving at 0.5 m s⁻¹ towards each other. What is the displacement at a distance of 1 m, after 4 s has passed?

(+3) + (-2) = +1

Noise Canceling Headphones

IB Sample Question

15. Two wave pulses travel along a string towards each other. The diagram shows their positions at a moment in time.

Which of the following shows a possible configuration of the pulses at a later time?

Interference from Multiple Sources

1D Sound Interference

......

λ

Path Difference = $\Omega \lambda \delta \lambda$

**n* is any integer

These are known as "**coherent waves**" because they have the same frequency and a constant phase difference

IB Physics Data Booklet

Sub-topic 4.1 – Oscillations	Sub-topic 4.4 – Wave behaviour
$T = \frac{1}{f}$	$\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1}$
Sub-topic 4.2 – Travelling waves	$s = \frac{\lambda D}{d}$
$c = f\lambda$	Constructive interference: path difference = $n\lambda$
Sub-topic 4.3 – Wave characteristics	Destructive interference, with difference $= (m + 1)$
$I \propto A^2$	Destructive interference: path difference = $(n + \frac{1}{2})\lambda$
$I \propto x^{-2}$	
$I = I_0 cos^2 \theta$	

Finding a Minimum

Path Difference = 2.1 - 1.8 = 0.3 m

Constructive | Path Difference = $n\lambda$

Destructive | Path Difference = $(n + \frac{1}{2})\lambda$

Path Difference = () $\times \lambda$

 $0.3 \text{ m} = (0.5) \times 0.6 \text{ m}$

Finding a Maximum

Path Difference = 2.1 - 1.5 = 0.6 m

Constructive | Path Difference = $n\lambda$

Destructive | Path Difference = $(n + \frac{1}{2})\lambda$

Path Difference = () × λ 0.6 m = (1) × 0.6 m

Try This

Mir

S2

S,

Two coherent point sources S_1 and S_2 emit spherical waves.

Which of the following best describes the intensity of the waves at P and Q?

Max

	Р	Q
А	Maximum	Minimum
В	Minimum	Maximum
С	Maximum	Maximum
D	Minimum	Minimum

Try this #1

0.8

Two speakers are separated by a distance of 5 meters, if they emit a coherent sound signal of 850 Hz. If the speed of sound is 340 m s⁻¹, is this person in a maximum or minimum location?

 $\nu = f\lambda$ $\lambda = \frac{\nu}{f} = \frac{340}{850} = 0.4 m$

Path Difference 2.9 – 2.1 = **0.8 m** Path Difference = (__) × λ

Maximum because result is a perfect integer

Try This #2

Lesson Takeaways

- □ I can qualitatively and quantitatively interpret cases of constructive and destructive interference
- I can add up two waves with superposition to create a new waveform
- □ I can use wavelength and source distance to identify maxima and minima for interference