Light and the EM Spectrum

IB PHYSICS | WAVES - LIGHT

Frequency and Light

Change in Frequency

Change in Frequency

Light

Sound

Frequency and Light

Ken Costello

Speed of Electromagnetic Waves

In a vacuum All electromagnetic waves travel at:

c = 299,792,458 m s⁻¹

Speed of Electromagnetic Waves

Fundamental constants

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	9.81 m s ⁻²
Gravitational constant	G	$6.67 imes 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
Avogadro's constant	N _A	$6.02 \times 10^{23} \text{mol}^{-1}$
Gas constant	R	$8.31 \text{J} \text{K}^{-1} \text{mol}^{-1}$
Boltzmann's constant	k_{B}	$1.38 imes 10^{-23} \text{J} \text{K}^{-1}$
Stefan-Boltzmann constant	σ	$5.67 imes 10^{-8} W m^{-2} K^{-4}$
Coulomb constant	k	$8.99 \times 10^9 \mathrm{N}\mathrm{m}^2\mathrm{C}^{-2}$
Permittivity of free space	ε_0	$8.85 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$
Permeability of free space	μ_0	$4\pi imes 10^{-7} T m A^{-1}$
Speed of light in vacuum	С	$3.00 \times 10^8 \mathrm{ms^{-1}}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{Js}$

The sun is roughly 149,600,000 km from Earth, how long has the light from the sun been traveling before it gets here?

Light Equation

You already know the wave speed equation

 $v = f \lambda$

Works the same for electromagnetic waves

 $c = f \lambda$

Electromagnetic Spectrum

Visible light is just part of the picture...

Electromagnetic Waves

Standing Waves in a Microwave

How far between antinodes of a 2450 MHz standing wave in a microwave? $v = f \lambda$

Anti-Nodes maximum heating Nodes no heating

Standing Waves in a Microwave

Electromagnetic Spectrum

The Electromagnetic Spectrum

Penetrates Earth Atmosphere?

Not everything makes it to Earth

Gamma Ray

Wavelength: 10⁻¹² m | 1 pm

Wavelength: 10⁻¹⁰ m | 10 nm

Ultraviolet

The wavelength of UV (ultraviolet) rays is measured in nanometers (or billionths of a meter), abbreviated as "nm."

Wavelength: 10⁻⁸ m | 10 nm

Visible Light

Wavelength: 0.5×10^{-12} m | 500 nm

Infrared

Wavelength: 10⁻⁵ m | 0.01 mm

Microwaves

Wavelength: 10⁻² m | 1 cm

Radiowaves

Wavelength: 10³ m | 1 km

Wireless Data Transfer

Can you name them? You should.

Lesson Takeaways

- □ I can identify and use the speed of light to solve wave problems with the wave equations
- □ I can estimate the wavelength magnitude for the different EM waves
- □ I can provide real world examples for each of the electromagnetic waves