Reflection \& Refraction

IB PHYSICS | WAVES - LIGHT

Reflection

Angle of Incidence $=$ Angle of Reflection

Normal Line (\perp to surface)

Reflection

Reflection

Predict

Can this person see their feet in the mirror?

No

If the angle of reflection equals the angle of incidence, the light can never reflect from their feet into their eyes

"Full Length" Mirrors

Not every surface is a flat mirror

Even surfaces that seem nice and flat are often textured

Diffuse Reflection

Retro-reflective Mirrors

Light always reflects directly back to the source

Retro-reflective Mirrors

Refraction

Bends because of a change in medium

Speed of Light

In a vacuum all electromagnetic waves travel at:

$$
c=299,792,458 \mathrm{~m} / \mathrm{s}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Light slows down when it travels through different mediums
Air
$2.999 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Water
$2.256 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Glass
$1.974 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$

Index of Refraction $\boldsymbol{\rightarrow} \boldsymbol{n}$

$\frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}} \left\lvert\, \quad \frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}}\right.$

1 Vacuum
$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
1
Air $\quad 2.999 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \quad 1.0003 \sim 1$
Water
$2.256 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
1.33

2
Glass
$1.974 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
1.52

Try This

How fast does light travel through cubic zirconia ($\mathrm{n}=2.15$)?

$$
\frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}} \quad \frac{1}{2.15}=\frac{v_{2}}{3.00 \times 10^{8}}
$$

$$
v_{2}=1.40 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
$$

Predicting the Bend

> faster
> $n=1$
> $n=1.33$
> slower

Predicting the Bend

Bends away from the least optically dense medium normal line
faster
$\mathrm{n}=1$
$\mathrm{n}=1.33$
slower

How Much Bend?

What's the relationship between index of refraction (n) and the amount that light bends?

Larger difference in index means more bending at boundary

$$
\mathrm{n}=1.33
$$

Air

More to less optically dense will bend away from normal

Lesson Takeaways

\square I can identify the angle of incidence and angle of reflection for a reflected wave ray
\square I can use the law of reflection to predict the way light bounces off of a plane mirror

I can relate the index of refraction of a material to the speed of light as it travels through
\square I can qualitatively predict how light bends when transitioning between boundaries

