Reflection \& Refraction

IB PHYSICS | WAVES - LIGHT

Reflection

Angle of ___ Angle of

Reflection

Predict

Can this person see their feet in the mirror?

Not every surface is a flat mirror

Even surfaces that seem nice and flat are often textured

Retro-reflective Mirrors

Retro-reflective Mirrors

Refraction

Speed of Light

In a vacuum all electromagnetic waves travel at:

$$
c=299,792,458 \mathrm{~m} / \mathrm{s}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Light slows down when it travels through different mediums
Air
$2.999 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Water
$2.256 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Glass
$1.974 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$

Index of Refraction $\boldsymbol{\rightarrow} \boldsymbol{n}$

$\frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}} \left\lvert\, \quad \frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}}\right.$

Vacuum $\quad 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \quad 1$
Air $\quad 2.999 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Water $\quad 2.256 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Glass $\quad 1.974 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$

Try This

How fast does light travel through cubic zirconia ($\mathrm{n}=2.15$) ?

$$
\frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}}
$$

Predicting the Bend

$$
\begin{aligned}
& n=1 \\
& n=1.33
\end{aligned}
$$

Predicting the Bend

How Much Bend?

What's the relationship between index of refraction (n) and the amount that light bends?

Water
$\mathrm{n}=1.33$
Glass
$\mathrm{n}=1.52$

Lesson Takeaways

\square I can identify the angle of incidence and angle of reflection for a reflected wave ray
\square I can use the law of reflection to predict the way light bounces off of a plane mirror

I can relate the index of refraction of a material to the speed of light as it travels through
\square I can qualitatively predict how light bends when transitioning between boundaries

