# Reflection & Refraction

IB PHYSICS | WAVES - LIGHT

# Reflection

#### Angle of \_\_\_\_\_ = Angle of \_\_\_\_\_



# Reflection





# Reflection



#### Predict

#### Can this person see their feet in the mirror?



### "Full Length" Mirrors



### Not every surface is a flat mirror

Even surfaces that seem nice and flat are often textured





#### Retro-reflective Mirrors



#### **Retro-reflective Mirrors**







# Refraction



# Speed of Light

In a vacuum all electromagnetic waves travel at:  $c = 299,792,458 \text{ m/s} = 3.00 \times 10^8 \text{ m/s}$ 

Light slows down when it travels through different mediums

| Air   | 2.999 × 10 <sup>8</sup> m s⁻¹             |
|-------|-------------------------------------------|
| Water | 2.256 × 10 <sup>8</sup> m s <sup>-1</sup> |
| Glass | 1.974 × 10 <sup>8</sup> m s⁻¹             |

### Index of Refraction $\rightarrow$ **n**

| $\frac{n_1}{=}$ | 2 n <sub>1</sub>              | <b>v</b> <sub>2</sub> |
|-----------------|-------------------------------|-----------------------|
| $n_2 v_1$       | n <sub>2</sub>                | <b>v</b> <sub>1</sub> |
| Vacuum          | 3.00 × 10 <sup>8</sup> m s⁻¹  | 1                     |
| Air             | 2.999 × 10 <sup>8</sup> m s⁻¹ |                       |
| Water           | 2.256 × 10 <sup>8</sup> m s⁻¹ |                       |
| Glass           | 1.974 × 10 <sup>8</sup> m s⁻¹ |                       |

# Try This

How fast does light travel through cubic zirconia (n = 2.15)?

 $\frac{n_1}{n_2} = \frac{v_2}{v_1}$ 



# Predicting the Bend



#### Predicting the Bend



# How Much Bend?



#### Lesson Takeaways

- □ I can identify the angle of incidence and angle of reflection for a reflected wave ray
- □ I can use the law of reflection to predict the way light bounces off of a plane mirror
- □ I can relate the index of refraction of a material to the speed of light as it travels through
- I can qualitatively predict how light bends when transitioning between boundaries