Snell's Law & Critical Angle

IB PHYSICS | WAVES - LIGHT

Remember the Bend

Remember the Bend

Snell's Law

$$\frac{n_1}{n_2} = \frac{\sin\theta_2}{\sin\theta_1}$$

IB Physics Data Booklet

Sub-topic 4.1 – Oscillations	Sub-topic 4.4 – Wave behaviour
$T = \frac{1}{f}$	$\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1}$
Sub-topic 4.2 – Travelling waves	$s = \frac{\lambda D}{d}$
$c = f\lambda$	u Constructive interference: nath difference = $n\lambda$
Sub-topic 4.3 – Wave characteristics	Destructive interference: path difference = $(n + \frac{1}{2})^2$
$I \propto A^2$	Destructive interference: path difference = $(n + \frac{1}{2})\lambda$
$I \propto x^{-2}$	
$I = I_0 \cos^2 \theta$	

$$\frac{n_1}{n_2} = \frac{v_2}{v_1} \qquad \frac{n_1}{n_2} = \frac{\sin\theta_2}{\sin\theta_1} = \frac{v_2}{v_1} \qquad \frac{n_1}{n_2} = \frac{\sin\theta_2}{\sin\theta_1}$$

Using Snell's Law

While aiming at a marble at the bottom of a fish tank filled with water ($n_2 = 1.33$), you point so that you can measure the angle of your incident rays. What is the angle of refraction?

$$\frac{n_1}{n_2} = \frac{\sin\theta_2}{\sin\theta_1} = \frac{v_2}{v_1}$$
$$\theta_2 = \sin^{-1}\left(\frac{n_1\sin\theta_1}{n_2}\right)$$

Where does it "appear" the marble is?

$$\theta_2 = sin^{-1} \left(\frac{1sin(80^\circ)}{1.33} \right) = 47.8^\circ$$

Try this...

If the light travels from air to diamond (n = 2.42) at an angle of incidence of 34°, find the angle of refraction. $\frac{n_1}{n_2} = \frac{\sin\theta_2}{\sin\theta_1} = \frac{v_2}{v_1} \qquad \theta_2 = \sin^{-1}\left(\frac{n_1\sin\theta_1}{n_2}\right)$ $\theta_2 = sin^{-1} \left(\frac{1sin(34^\circ)}{1.33} \right) = 13.4^\circ$

Refraction AND Reflection

Critical Angle

Remember the Bend

Critical Angle

$$\frac{n_1}{n_2} = \frac{\sin\theta_2}{\sin\theta_1} \qquad \theta_1 = \sin^{-1}\left(\frac{n_2\sin\theta_2}{n_1}\right)$$

$$\theta_{c} = sin^{-1} \left(\frac{n_{2} sin(90^{\circ})}{n_{1}} \right) = sin^{-1} \left(\frac{n_{2}}{n_{1}} \right)$$

$$\eta_{2} = 90^{\circ}$$

$$\eta_{2} = 90^{\circ}$$

$$\eta_{1} = 1.33$$
Note: this only happens when transitioning from more dense to less dense

Try This

What's the critical angle between glass and air?

Why does it matter?

Sample IB Question

A light ray is incident on an air-diamond boundary. The refractive index of diamond is greater than 1. Which diagram shows the correct path of the light ray?

Lesson Takeaways

- □ I can mathematically relate the angles of refraction to the indices of refraction for the materials
- □ I can describe the phenomenon of total internal reflection
- □ I can calculate the critical angle of incidence so that the light cannot escape the medium