WAVES - SOUND

IB PHYSICS | COMPLETED NOTES

Simple Harmonic Motion

IB PHYSICS | WAVES - SOUND

Warm up

What words would you use to describe the motion of a bobble head doll?

- Oscillating
- Back and Forth
- Repeating
- Etc.

A Mass on a Spring

Simple Harmonic Motion

. - - Maximum
.

Equilibrium Position

- - - - Minimum _ - - - - - - - - - - - - - - - - - -

Let's look at the forces...

Force and Displacement

Why the Negative Sign??

Where is the Greatest...

Graphing Displacement vs Time

Energy for SHM

Energy for SHM

Energy for SHM

Acceleration vs Displacement

Velocity vs Displacement

vs Displacement

Properties of SHM

Frequency Cycles per second $f \quad[\mathrm{~Hz}]$

Period is related to Frequency

Period = $1 /$ Frequency

Sub-topic 4.1 - Oscillations
$T=\frac{1}{f}$
Sub-topic 4.2 - Travelling waves
$c=f \lambda$
Sub-topic 4.3 - Wave characteristics
$I \propto A^{2}$
$I \propto x^{-2}$
$I=I_{0} \cos ^{2} \theta$

Bativito
Conimo
donthertime
nomorse

Period is related to Frequency

Period = $1 /$ Frequency

$$
f=\frac{1}{T}
$$

$$
f=\frac{1}{T} \quad \text { Try this... } \quad T=\frac{1}{f}
$$

Taylor Swift's song Shake it Off has a tempo of 160 beats per minute (2.67 Hz) how many seconds are in between each beat (the period)

$$
\begin{aligned}
f & =2.67 \mathrm{~Hz} \\
T & =? ?
\end{aligned} \quad T=\frac{1}{f}=\frac{1}{2.67 \mathrm{~Hz}}=\mathbf{0 . 3 7} \mathbf{s}
$$

$$
f=\frac{1}{T} \quad \text { Try this... } \quad T=\frac{1}{f}
$$

You are standing on the beach with your feet in the water and notice that a new wave comes crashing in every 4 seconds, what is the frequency of these waves?

$$
\begin{aligned}
& T=4 s \\
& f=? ?
\end{aligned}
$$

$$
f=\frac{1}{T}=\frac{1}{4 s}=0.25 \mathrm{~Hz}
$$

A little harder...

You are pushing your younger brother on a swing and you end up pushing 12 times in one minute. What is the period and frequency of the swing?

$$
T=\frac{60 \text { seconds }}{12 \text { times }}=5 \mathbf{s}
$$

$$
f=\frac{1}{T}=\frac{1}{5 \mathrm{~s}}=0.2 \mathrm{~Hz}
$$

Lesson Takeaways

\square I can relate the acceleration of an object in simple harmonic motion to its position
I can graph the displacement, velocity, and acceleration vs time for simple harmonic motion
\square I can describe and relate the properties of period and frequency
\square I can calculate period and frequency from a scenario

Properties of Traveling Waves

IB PHYSICS | WAVES - SOUND

What is a Wave?

What is a Wave?

A wave is a disturbance that carries energy through matter or space

matter through which a wave travels

Is the Medium Moving?

The medium particles oscillate back and forth

Two Types of Waves

Transverse

Particles move perpendicular to the wave's motion

Longitudinal

Particles move parallel to the wave's motion

Examples:

- Sound Waves
- Earthquake Waves

Properties of a Wave

Properties of a Wave

Property
Symbol
Amplitude
Wavelength
A
Unit
[m]
λ
[m]

Waves and Energy

ANA
\uparrow Amplitude = \uparrow Energy
\downarrow Amplitude $=\downarrow$ Energy
\uparrow Wavelength = \downarrow Energy
\downarrow Wavelength $=\uparrow$ Energy

Label this wave

Can you identify the wave properties from this diagram?

Amplitude?
 D
 Wavelength?

How Many Waves?

Wavelength is related to frequency

Longer wavelength

Lower frequency
ANAM
Shorter wavelength Higher frequency

Wave Speed Equation

Speed $=$ Frequency \times Wavelength

$$
\begin{aligned}
& \begin{array}{l}
\text { n } \\
\text { O } \\
E \\
\vdots
\end{array} \\
& \mathrm{~V}=f \\
& \times
\end{aligned}
$$

$\stackrel{y}{5}\left[\mathrm{~m} \mathrm{~s}^{-1}\right]=[\mathrm{Hz}] \times[\mathrm{m}]$

$$
\left[\mathrm{s}^{-1}\right]
$$

IB Physics Data Booklet

Sub-topic 4.1 - Oscillations	Sub-topic 4.4 - Wave behaviour
$T=\frac{1}{f}$	$\begin{aligned} & \frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}} \\ & s=\frac{\lambda D}{d} \end{aligned}$ Constructive interference: path difference $=n \lambda$ Destructive interference: path difference $=\left(n+\frac{1}{2}\right) \lambda$
Sub-topic 4.2 - Travelling waves	
$c=f \lambda$	
Sub-topic 4.3 - Wave characteristics	
$\begin{aligned} & I \propto A^{2} \\ & I \propto x^{-2} \\ & I=I_{0} \cos ^{2} \theta \end{aligned}$	

*Note: "c" represents the speed of light but the relationship is the same for all wave speeds

Try this...

A piano string vibrates with a frequency of 262 Hz . If these sound waves have a wavelength in the air of 1.30 m , what is the speed of sound?

$$
\begin{aligned}
& f=262 \mathrm{~Hz} \\
& \lambda=1.30 \mathrm{~m} \quad v=f \lambda=(262)(1.30)=340.6 \mathrm{~m} / \mathrm{s} \\
& v=? ?
\end{aligned}
$$

$$
f=\frac{1}{T} \quad \text { Read a Wave \#1 }
$$

$$
T=\frac{1}{f}
$$

\# of Waves
3
Period

$$
4 \mathrm{~s}
$$

Amplitude
2 m
Frequency
0.25 Hz

$$
f=\frac{1}{T} \quad \text { Read a Wave \#2 }
$$

$$
T=\frac{1}{f}
$$

\# of Waves
1.5

Period
8 s
Amplitude
3 m
Frequency
0.125 Hz

One Final Question...

The crests of waves passing into a harbor are 2.1 m apart and have an amplitude of 60 cm .12 waves pass an observer every minute.

What is their frequency?

$$
\begin{aligned}
\frac{12 \text { waves }}{1 \text { mín }} \times \frac{1 \text { mín }}{60 \mathrm{~s}} & =0.2 \frac{\text { waves }}{s} \\
f & =\mathbf{0 . 2 ~ H z}
\end{aligned}
$$

What is their speed?

$$
\begin{aligned}
v & =f \lambda \\
& =(0.2)(2.1) \\
& =\mathbf{0 . 4 2} \boldsymbol{m} \boldsymbol{s}^{-1}
\end{aligned}
$$

Lesson Takeaways

\square I can describe how waves carry energy through a medium
\square I can compare the properties of transverse and longitudinal waves
\square I can read a wave's amplitude, wavelength, period, and frequency from a graph
\square I can describe the number of complete wavelengths represented in a picture
\square I can use the wave speed equation to mathematically relate speed, wavelength, and frequency

Sound and Standing Waves

IB PHYSICS | WAVES - SOUND

Sound Waves start as Vibrations

What kind of wave is sound?

Longitudinal

Sound is Pressure

Vibrations pressurize the air molecules and those pressure waves cause our ears to vibrate too!

Pitch is Related to Frequency

High pitched sounds have
 high frequencies

Low pitched sounds have IOW frequencies

Sensing Pitch

Sadly, the range of frequencies that we can hear diminishes with age...

Frequency

$8,000 \mathrm{~Hz}$
$10,000 \mathrm{~Hz}$
$12,000 \mathrm{~Hz}$
$14,000 \mathrm{~Hz}$
$16,000 \mathrm{~Hz}$
$18,000 \mathrm{~Hz}$
$20,000 \mathrm{~Hz}$

What do you notice from the video?

Standing Waves

Standing Waves

$\leftarrow{ }^{2} \mathrm{~m} \rightarrow$	1	0.5	24
∞	2	1	12
∞	3	1.5	8
∞	4	2	6

"Seeing" Standing Waves

The Rubens' Flame Tube: Seeing Sound Through Fire

Finding The Speed Of Light With Peeps | SKUNK BEAR

Lesson Takeaways

\square I can relate the pitch of a sound to the frequency of the sound wave
\square I can identify and label the node and antinodes on a standing wave diagram

Calculating Harmonics and Instruments

IB PHYSICS | WAVES - SOUND

Standing Waves Review

Harmonics

Open Pipe Resonance

Antinode

L =
$\frac{3}{2} \lambda$
1λ
$\frac{1}{2} \lambda$

Closed Pipe Resonance

$$
\begin{gathered}
L= \\
\frac{5}{4} \lambda
\end{gathered}
$$

$\frac{3}{4} \lambda$
$\frac{1}{4} \lambda$

Strings make sound too!

wave speed

changes depending on the string tension

Two ways to increase frequency in string:

increase tension

decrease length

String Resonance

$$
\begin{gathered}
L= \\
\frac{3}{2} \lambda \\
1 \lambda \\
\frac{1}{2} \lambda
\end{gathered}
$$

Review of End Conditions

Closed Pipe
Node
Antinode

Open Pipe Antinode Antinode

String
Node
Node

All the Harmonics!

Open
 Closed
 String

Remember Pitch and Frequency

High pitched sounds have high frequencies

Low pitched sounds have low frequencies

Making Different Pitches

The lengths are designed for the fundamental frequency

Calculating Frequency | Open Pipes

An open organ pipe is 2.1 m long and the speed of sound in the pipe is $341 \mathrm{~m} / \mathrm{s}$. What is the fundamental frequency of the pipe?

$$
\begin{array}{lr}
\begin{array}{l}
v=f \lambda \\
f=? \\
v=341 \mathrm{~m} \mathrm{~s}^{-1} \\
\lambda=4.2 \mathrm{~m}
\end{array} & =\mathbf{8 1 . 2 \mathbf { H z }}
\end{array}
$$

$$
L=\frac{1}{2} \lambda \rightarrow \lambda=2 L=2(2.1)=4.2 \mathrm{~m}
$$

Resonant String Practice

The note produced on a violin string of length 40 cm produces a wave speed of $250 \mathrm{~m} / \mathrm{s}$. What is the first harmonic of this note?

$$
\begin{array}{ll}
\begin{array}{l}
v=f \lambda \\
f=? \\
v=250 \mathrm{~m} \mathrm{~s}^{-1} \\
\lambda=0.8 \mathrm{~m}^{2}
\end{array} & =\mathbf{v 1 2 . 5} \mathbf{~ H z}
\end{array}
$$

$$
L=\frac{1}{2} \lambda \rightarrow \lambda=2 L=2(0.4)=0.8 \mathrm{~m}
$$

Finding Resonance

Tuning fork

Calculating Frequency | Closed Pipes

You found an unmarked tuning fork in your collection. You notice that the smallest length for resonance is 12 cm . If the speed of sound is $345 \mathrm{~m} / \mathrm{s}$, what is the tuning fork frequency?

$$
\begin{array}{r}
L=\frac{1}{4} \lambda \longrightarrow \lambda=4 L=4(0.12)=0.48 \mathrm{~m} \\
f=\frac{v}{\lambda}=\frac{345}{0.48}=718.75 \mathrm{~Hz}
\end{array}
$$

What should the length of the tube be for the $2^{\text {nd }}$ resonant position?

$$
L=\frac{3}{4} \lambda=\frac{3}{4}(0.48)=\mathbf{0 . 3 6} \mathbf{m}
$$

Lesson Takeaways

\square I can identify and label the node and antinodes on a standing wave diagram
\square I can describe the end conditions and nodes/antinodes for open/closed pipes and vibrating strings
\square I can calculate the wavelength or instrument length of a standing wave for different harmonics

Speed of Sound

IB PHYSICS | WAVES - SOUND

Speed of Sound Depends on Medium

Medium	Speed of sound $(\mathrm{m} / \mathrm{s})$	Medium	Speed of sound $(\mathrm{m} / \mathrm{s})$
Gases	331	Liquids at $\mathbf{2 5}^{\circ} \mathrm{C}$	
Air $\left(0^{\circ} \mathrm{C}\right)$	346	Water	1,490
Air $\left(25^{\circ} \mathrm{C}\right)$	Sea water	1,530	
Air $\left(100^{\circ} \mathrm{C}\right)$	386	Solids	
Helium $\left(0^{\circ} \mathrm{C}\right)$	972	Copper	3,813
Hydrogen $\left(0^{\circ} \mathrm{C}\right)$	1,290	Iron	5,000
Oxygen $\left(0^{\circ} \mathrm{C}\right)$	317	Rubber	54

$$
\begin{aligned}
& \text { Air }\left(25^{\circ} \mathrm{C}\right) \\
& 760 \mathrm{mph} \\
& 0.21 \text { miles } / \mathrm{sec}
\end{aligned}
$$

Speed of Sound for Air (at any temp)

$$
v=331 \mathrm{~m} \mathrm{~s}^{-1}+0.6 \times\left(\operatorname{Temp~in~}^{\circ} \mathrm{C}\right)
$$

Speed of Sound Depends on Medium

Why does Medium Affect Speed? molecule spacing

Medium	Speed of sound $(\mathrm{m} / \mathrm{s})$	Medium	Speed of sound $(\mathrm{m} / \mathrm{s})$
Gases	331	Liquids at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$	
Air $\left(0^{\circ} \mathrm{C}\right)$	Water	1,490	
Air $\left(25^{\circ} \mathrm{C}\right)$	346	Sea water	1,530
Air $\left(100^{\circ} \mathrm{C}\right)$	386	Solids	
Helium $\left(0^{\circ} \mathrm{C}\right)$	972	Copper	3,813
Hydrogen $\left(0^{\circ} \mathrm{C}\right)$	1,290	Iron	5,000
0xygen $\left(0^{\circ} \mathrm{C}\right)$	317	Rubber	54

Do other factors increase speed?

Frequency?
 No

$v=f \times \lambda$

$$
v=f \times \lambda
$$

Amplitude? No
*Independent from all other wave properties

Sound is fast, but not THAT fast...

Timer

$$
v=\frac{d}{t}=\frac{335 \mathrm{~m}}{0.935 \mathrm{~s}}=\mathbf{3 5 8} \mathbf{m ~ s}^{\mathbf{- 1}}
$$

Using the Speed of Sound

You see lightning strike and immediately start counting, once you get to 7 seconds, you hear the boom of thunder. How far away is the storm?

Air $\left(25^{\circ} \mathrm{C}\right)$
346 m/s
760 mph
0.21 miles $/ \mathrm{sec}$

$$
d=v t=(0.21)(7)
$$

$$
=1.47 \text { miles }
$$

Shortcut for Clocking a Storm

As soon as you see lightning strike, start counting...

One one thousand, Two one thousand...
Stop counting as soon as you hear the thunder from that bolt of lightning

Distance in Miles = Time / 5

ECHO.... Echo.... Echo....

When you hear an echo, you are hearing the sound after it has reflected off of an object and returned to your ear

Calculating Distance from an Echo

A saxophonist plays a duet with himself using the echo of the sound in a long pipe. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$ and echo returns 1.3 seconds after the original sound, how long is the pipe?
$v=\frac{d}{t}$
$d=v t=(340)(0.65)=221 m$

How do we locate sounds?

Sound reaches one ear before the other. It also sounds different from different locations due to the shape of our ears.

Lesson Takeaways

\square I can describe why sound travels at different speeds in different media
\square I can calculate how far a distant object is by timing an echo

Wave Interference

IB PHYSICS | WAVES - SOUND

Interference

When several waves are in the same location, they combine to produce a new wave that is different from the original waves.

After waves pass by one another continue on unchanged

Name that Interference

Constructive Interference

Destructive Interference

Constructive Interference

What is the resulting amplitude when these waves meet?

Destructive Interference

What is the resulting amplitude
when these waves meet?

IB Sample Question

Both the waves below are moving at $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ towards each other. What is the displacement at a distance of 1 m , after 4 s has passed?

$$
(+3)+(-2)=+\mathbf{1}
$$

Distance / m

Noise Canceling Headphones

IB Sample Question

15. Two wave pulses travel along a string towards each other. The diagram shows their positions at a moment in time.

Which of the following shows a possible configuration of the pulses at a later time?
A.

B.

Interference from Multiple Sources

Constructive
Destructive

1D Sound Interference

Path Difference $=0.5 \lambda$

0入	0.5入	1λ	1.5 λ	2λ	2.5λ		
\checkmark		\checkmark		\checkmark		Constructive	Path Difference $=n \lambda$
	\checkmark		\checkmark		\checkmark	Destructive	Path Difference $=\left(n+\frac{1}{2}\right) \lambda$

These are known as "coherent waves" because they have the same frequency and a constant phase difference

IB Physics Data Booklet

Sub-topic 4.1- Oscillations	Sub-topic $4.4-$ Wave behaviour
$T=\frac{1}{f}$	$\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}}$
Sub-topic 4.2 - Travelling waves	$s=\frac{\lambda D}{d}$
$c=f \lambda$	Constructive interference: path difference $=n \lambda$
Sub-topic 4.3 - Wave characteristics	Destructive interference: path difference $=\left(n+\frac{1}{2}\right) \lambda$
$I \propto A^{2}$	
$I \propto x^{-2}$	
$I=I_{0} \cos ^{2} \theta$	

Finding a Minimum

Path Difference $=2.1-1.8=0.3 \mathrm{~m}$
Path Difference $=(\quad) \times \lambda$
Constructive \mid Path Difference $=n \lambda$
Destructive | Path Difference $=\left(n+\frac{1}{2}\right) \lambda$

$$
0.3 \mathrm{~m}=(0.5) \times 0.6 \mathrm{~m}
$$

Finding a Maximum

Path Difference $=2.1-1.5=0.6 \mathrm{~m}$

Constructive | Path Difference $=n \lambda$
Destructive \mid Path Difference $=\left(n+\frac{1}{2}\right) \lambda$
Path Difference $=(\quad) \times \lambda$

$$
0.6 \mathrm{~m}=(1) \times 0.6 \mathrm{~m}
$$

Try This

Two coherent point sources S_{1} and S_{2} emit spherical waves.

Which of the following best describes the intensity of the waves at P and Q ?

	P	Q
A	Maximum	Minimum
B	Minimum	Maximum
C	Maximum	Maximum
D	Minimum	Minimum

Try this \#1

Path Difference

$2.9-2.1=\mathbf{0 . 8} \mathbf{m}$

Two speakers are separated by a distance of 5 meters, if they emit a coherent sound signal of 850 Hz . If the speed of sound is $340 \mathrm{~m} \mathrm{~s}^{-1}$, is this person in a maximum or minimum location?

$$
v=f \lambda
$$

$$
\lambda=\frac{v}{f}=\frac{340}{850}=0.4 \mathrm{~m}
$$

Path Difference $=\left(_\right) \times \lambda$

Maximum because result

Try This \#2

If these speakers are playing a note with a frequency of 680 Hz , is this person standing at a maximum or minimum spot? Assume a speed of sound of $340 \mathrm{~m} \mathrm{~s}^{-2}$

$$
\lambda=\frac{v}{f}=\frac{340}{680}=0.5 \mathrm{~m}
$$

Path Diff. $=(\quad) \times \lambda$

What frequency would result in the opposite effect?
(Could be anything that ends in .5)

$\frac{2 \mathrm{~m}}{\lambda}$

$$
\lambda=0.44 \mathrm{~m}
$$

$$
f=\frac{v}{\lambda}=\frac{340}{0.44}=773 \mathrm{~Hz}
$$

Lesson Takeaways

\square I can qualitatively and quantitatively interpret cases of constructive and destructive interference
\square I can add up two waves with superposition to create a new waveform
\square I can use wavelength and source distance to identify maxima and minima for interference

