WAVES - LIGHT

IB PHYSICS | COMPLETED NOTES

Light and the EM Spectrum

IB PHYSICS | WAVES - LIGHT

Frequency and Light

Sound $\xrightarrow{\text { Change in Frequency }}$ Pitch

Change in Frequency
 Color

Frequency and Light

SOMTOMEISKRYOUB FIUORIE COLOB

CTVE THED A WUTITIENADH TICHOOMETHS

Speed of Electromagnetic Waves

In a vacuum All electromagnetic waves travel at:

$$
\mathrm{c}=299,792,458 \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
$$

Speed of Electromagnetic Waves

Fundamental constants

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Avogadro's constant	N_{A}	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Gas constant	R	$8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Coulomb constant	k	$8.99 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$
Permittivity of free space	ε_{0}	$8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
Permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

Try this...

The sun is roughly $149,600,000 \mathrm{~km}$ from Earth, how long has the light from the sun been traveling before it gets here?

$$
\left.v=\frac{d}{t}\right\rangle_{t=\frac{d}{v}}=\frac{149,600,000,000 \mathrm{~m}}{3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}
$$

$$
t=499 \mathrm{~s}=\mathbf{8 . 3 1} \mathbf{~ m i n}
$$

Light Equation

You already know the wave speed equation

$$
\mathrm{V}=f \lambda
$$

Works the same for electromagnetic waves

$$
c=f \lambda
$$

Electromagnetic Spectrum

Visible light is just part of the picture...

Electromagnetic Waves

Electric \uparrow field

$? \underset{\text { or }}{\text { Transverse }} ?$

Longitudinal

Standing Waves in a Microwave

How far between antinodes of a 2450 MHz standing wave in a microwave?

$$
\begin{aligned}
& v=f \lambda \\
& \qquad \lambda=\frac{v}{f}=\frac{3.00 \times 10^{8}}{2450 \times 10^{6}}=0.12 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\frac{0.12 \mathrm{~m}}{2} & =0.06 \mathrm{~m} \\
& =\mathbf{6} \mathbf{~ c m}
\end{aligned}
$$

Standing Waves in a Microwave

Electromagnetic Spectrum

The Electromagnetic Spectrum

Penetrates Earth Atmosphere?

Y		N	Y		
Wavelength (meters)					
Radio	Microwave	Infrared	Visible	Ultraviolet	X-ray
10^{3}	10^{-2}	10^{-5}	$.5 \times 10^{-6}$		

About the size of...

Not everything makes it to Earth

Gamma Ray

Wavelength: $10^{-12} \mathrm{~m} \mid 1 \mathrm{pm}$

X-Rays

Wavelength: $10^{-10} \mathrm{~m} \mid 10 \mathrm{~nm}$

Ultraviolet

Wavelength: $10^{-8} \mathrm{~m} \mid 10 \mathrm{~nm}$

Visible Light

Wavelength: $0.5 \times 10^{-12} \mathrm{~m} \mid 500 \mathrm{~nm}$

Infrared

Wavelength: $10^{-5} \mathrm{~m} \mid 0.01 \mathrm{~mm}$

Microwaves

Wavelength: $10^{-2} \mathrm{~m} \mid 1 \mathrm{~cm}$

Radiowaves

Wavelength: $10^{3} \mathrm{~m} \mid 1 \mathrm{~km}$

Wireless Data Transfer

Can you name them? You should.

A	Radio
B	Microwaves
C	Infrared
D	Visible
E	Ultraviolet
F	X-Rays
G	Gamma

Higher Frequency
More Energy

Lesson Takeaways

\square I can identify and use the speed of light to solve wave problems with the wave equations
\square I can estimate the wavelength magnitude for the different EM waves
\square I can provide real world examples for each of the electromagnetic waves

Reflection \& Refraction

IB PHYSICS | WAVES - LIGHT

Reflection

Angle of Incidence $=$ Angle of Reflection

Normal Line (\perp to surface)

Reflection

Reflection

Predict

Can this person see their feet in the mirror?

No

If the angle of reflection equals the angle of incidence, the light can never reflect from their feet into their eyes

"Full Length" Mirrors

Not every surface is a flat mirror

Even surfaces that seem nice and flat are often textured

Diffuse Reflection

Retro-reflective Mirrors

Light always reflects directly back to the source

Retro-reflective Mirrors

Colors

We perceive colors in objects depending on how different wavelengths are reflected

Refraction

Bends because of a change in medium

Speed of Light

In a vacuum all electromagnetic waves travel at:

$$
c=299,792,458 \mathrm{~m} / \mathrm{s}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Light slows down when it travels through different mediums
Air
$2.999 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Water
$2.256 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Glass
$1.974 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$

Index of Refraction $\boldsymbol{\rightarrow} \boldsymbol{n}$

$\frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}} \left\lvert\, \quad \frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}}\right.$

1 Vacuum
$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
1
Air $\quad 2.999 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \quad 1.0003 \sim 1$
Water
$2.256 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
1.33

2
Glass
$1.974 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
1.52

Try This

How fast does light travel through cubic zirconia ($\mathrm{n}=2.15$)?

$$
\frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}} \quad \frac{1}{2.15}=\frac{v_{2}}{3.00 \times 10^{8}}
$$

$$
v_{2}=1.40 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
$$

Refraction Boundary

Refraction Boundary

Bends away from the least optically dense medium normal line
faster
$n=1$
$\mathrm{n}=1.33$
slower

How Much Bend?

What's the relationship between index of refraction (n) and the amount that light bends?

Larger difference in index means more bending at boundary

$$
\mathrm{n}=1.33
$$

Glass
$\mathrm{n}=1.52$

Air

More to less optically dense will bend away from normal

Lesson Takeaways

\square I can identify the angle of incidence and angle of reflection for a reflected wave ray
\square I can use the law of reflection to predict the way light bounces off of a plane mirror

I can relate the index of refraction of a material to the speed of light as it travels through
\square I can qualitatively predict how light bends when transitioning between boundaries

Snell's Law \& Critical Angle

IB PHYSICS | WAVES - LIGHT

Remember the Bend

faster
$n=1$
$\mathrm{n}=1.33$
slower

Remember the Bend

slower
$\mathrm{n}=1.33$
n = 1
faster

Snell's Law

$$
\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}
$$

IB Physics Data Booklet

Sub-topic 4.1 - Oscillations	Sub-topic 4.4 - Wave behaviour
$T=\frac{1}{f}$	$\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}}$
Sub-topic 4.2 - Travelling waves	$\begin{aligned} & s=\frac{\lambda D}{d} \\ & \text { Constructive interference: } \quad \text { path difference }=n \lambda \\ & \text { Destructive interference: } \quad \text { path difference }=\left(n+\frac{1}{2}\right) \lambda \end{aligned}$
$c=f \lambda$	
Sub-topic 4.3 - Wave characteristics	
$\begin{aligned} & I \propto A^{2} \\ & I \propto x^{-2} \\ & I=I_{0} \cos ^{2} \theta \end{aligned}$	

$$
\frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}} \quad \frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}} \quad \frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}
$$

Using Snell's Law

While aiming at a marble at the bottom of a fish tank filled with water ($n_{2}=1.33$), you point so that you can measure the angle of your incident rays. What is the angle of refraction?

$$
\begin{aligned}
& \frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}} \\
& \theta_{2}=\sin ^{-1}\left(\frac{n_{1} \sin \theta_{1}}{n_{2}}\right) \quad \text { Where does it "appear" the marble is } \\
& \theta_{2}=\sin ^{-1}\left(\frac{1 \sin \left(80^{\circ}\right)}{1.33}\right)=\mathbf{4 7 . 8 ^ { \circ }}
\end{aligned}
$$

Try this...

If the light travels from air to diamond $(\mathrm{n}=2.42)$ at an angle of incidence of 34°, find the angle of refraction.

$$
\begin{gathered}
\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}} \quad \theta_{2}=\sin ^{-1}\left(\frac{n_{1} \sin \theta_{1}}{n_{2}}\right) \\
\theta_{2}=\sin ^{-1}\left(\frac{1 \sin \left(34^{\circ}\right)}{1.33}\right)=13.4^{\circ}
\end{gathered}
$$

Refraction AND Reflection

Critical Angle

Critical Angle: θ_{C}

Angle at which
 $\theta_{2}=90^{\circ}$ so no
 light escapes

Remember the Bend

Critical Angle

$$
\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}} \quad \theta_{1}=\sin ^{-1}\left(\frac{n_{2} \sin \theta_{2}}{n_{1}}\right)
$$

$$
\theta_{c}=\sin ^{-1}\left(\frac{n_{2} \sin \left(90^{\circ}\right)}{n_{1}}\right)=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)
$$

$$
\begin{aligned}
& n_{2}=1 \\
& n_{1}=1.33
\end{aligned}
$$

Note: this only happens when transitioning from more dense to less dense

Try This

What's the critical angle between glass and air?

$$
\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}
$$

$$
\theta_{c}=\sin ^{-1}\left(\frac{1}{1.52}\right)=41.1^{\circ}
$$

$$
\begin{aligned}
& n_{2}=1 \\
& n_{1}=1.52
\end{aligned}
$$

Why does it matter?

Snell's Circle

Fiber Optic Cables for transmitting information with light

Sample IB Question

A light ray is incident on an air-diamond boundary. The refractive index of diamond is greater than 1 . Which diagram shows the correct path of the light ray?

C.

D.

Lesson Takeaways

\square I can mathematically relate the angles of refraction to the indices of refraction for the materials
\square I can describe the phenomenon of total internal reflection
\square I can calculate the critical angle of incidence so that the light cannot escape the medium

Diffraction

IB PHYSICS | WAVES - LIGHT

Diffraction

as the wave goes through the gap it spreads out

the same thing happens if it goes around an obstacle

What would you expect?

You shine a light through two vertical slits in a barrier. What is the resulting image on the screen behind?

Remember Interference?

Constructive

b
Destructive

Diffraction

Destructive

Constructive

Destructive

Double Slit Experiment

IB Physics Data Booklet

Sub-topic 4.1-Oscillations	Sub-topic $4.4-$ Wave behaviour
$T=\frac{1}{f}$	$\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}}$
Sub-topic 4.2 - Travelling waves	$S=\frac{\lambda D}{d}$
$c=f \lambda$	Constructive interference: path difference $=n \lambda$
Sub-topic 4.3 - Wave characteristics	Destructive interference: path difference $=\left(n+\frac{1}{2}\right) \lambda$
$I \propto A^{2}$	
$I \propto x^{-2}$	
$I=I_{0} \cos ^{2} \theta$	

milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}

Double Slit Experiment

As wavelength (λ) increases,

s increases

As gap (d) increases,

s decreases

Try This

Blue laser light of wavelength 450 nm is shone on two slits that are 0.1 mm apart. How far apart are the fringes on a screen placed 5.0 m away?

$$
\begin{aligned}
& \lambda=450 \mathrm{~nm}=450 \times 10^{-9} \mathrm{~m} \\
& \mathrm{~d}=0.1 \mathrm{~mm}=0.1 \times 10^{-3} \mathrm{~m} \\
& \mathrm{D}=5 \mathrm{~m}
\end{aligned}
$$

$$
s=\frac{\left(450 \times 10^{-9}\right)(5)}{\left(0.1 \times 10^{-3}\right)}
$$

$$
s=0.02 \mathrm{~m}
$$

Would red laser light have fringes closer together or farther apart?

Increasing Wavelength

As wavelength increases, fringes get farther apart

Lesson Takeaways

\square I can describe how light bends around a boundary
\square I can predict the resulting image from a double slit experiment
\square I can calculate the spacing between bright spots for the double slit experiment
I can conceptually relate band spacing with wavelength and gap distance

Polarization

IB PHYSICS | WAVES - LIGHT

Light is a Transverse Wave

This isn't the whole story though...

When unpolarized, light can be thought of as oscillating at every perpendicular to the wave's motion

Diagram of a light ray coming out of the page

Polarizers

Unpolarized light loses 50\% intensity when passing through a polarizer

Polarized Light

Malus' Law

$I=I_{0} \cos ^{2} \theta$

$\theta=$ angle between filters

Same thing as
$I=I_{0}(\cos \theta)^{2}$

IB Physics Data Booklet

Sub-topic 4.1-Oscillations	Sub-topic $4.4-$ Wave behaviour
$T=\frac{1}{f}$	$\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{v_{2}}{v_{1}}$ $s=\frac{\lambda D}{d}$ Sub-topic 4.2 - Travelling waves Constructive interference: path difference $=n \lambda$
$c=f \lambda$	Destructive interference: path difference $=\left(n+\frac{1}{2}\right) \lambda$
Sub-topic 4.3 - Wave characteristics	
$I \propto A^{2}$	
$I \propto x^{-2}$	
$I=I_{0} \cos ^{2} \theta$	

Loses Intensity Twice

$$
I=I_{0} \cos ^{2} \theta
$$

50\% loss when unpolarized light is polarized

Equation calculates loss through subsequent filters

Angle Difference

The intensity of plane polarized light, at 40° to the vertical is I_{0}. After passing through an analyzer at 60° to the vertical, what is the intensity measured?

$$
\begin{aligned}
& \theta=60^{\circ}-40^{\circ}=20^{\circ} \\
& I=I_{0} \cos ^{2}\left(20^{\circ}\right)=0.883 I_{\mathbf{0}}
\end{aligned}
$$

88.3% of the original intensity

Sample IB Question

Polarized light of intensity I_{0} is incident on a polarizing filter. The angle between the plane of polarization of the incident light and the transmission plane of the polarizer is θ. Which graph shows how the intensity I of the light transmitted through the polarizer varies with θ ?

$90^{\circ} \rightarrow$ Intensity $=0$
$\cos ^{2}$ shape

Try this Calculation

After passing through one polarized filter, the intensity of vertically polarized light is $60 \mathrm{~W} \mathrm{~m}^{-2}$. What is the angle of the analyzer relative to the vertical if the intensity observed is $20 \mathrm{~W} \mathrm{~m}^{-2}$?

$$
\begin{array}{lr}
I=I_{0} \cos ^{2} \theta & 20=60(\cos \theta)^{2} \\
I=I_{0}(\cos \theta)^{2} & \theta=\cos ^{-1}\left(\sqrt{\frac{20}{60}}\right. \text { Unpolarized } \\
\text { light }
\end{array}
$$

Polarizer

Analyzer

What was the intensity of the unpolarized light?

$120 \mathrm{~W} \mathrm{~m}^{-2}$

Loses 50\% from first filter

This isn't the only way

What about 3D Movies?

Types of 3D Glasses

Red/Cyan Glasses
 Polarized Active Shutter Glasses Glasses

Each lens blocks a different image, so each eye gets a different image which the brain interprets as 3D

Lesson Takeaways

\square I can describe the transformation that takes place when unpolarized light is polarized
I can describe the interaction between two polarized filters at different orientations

I I can use Malus's Law to calculate the change in intensity when passing through polarized filters

