Waves - Light IB Physics Content Guide

Big Ideas

- Light waves can be transformed through reflection, refraction, and diffraction
- Light travels at different speeds through different material

Content Objectives

1 – Light and the EM Spectrum

I can describe how the properties of electromagnetic waves change as frequency changes			
I can identify and use the speed of light to solve wave problems with the wave equations			
I can estimate the wavelength magnitude for the different EM waves			
I can provide real world examples for each of the electromagnetic waves			

2 – Reflection and Refraction

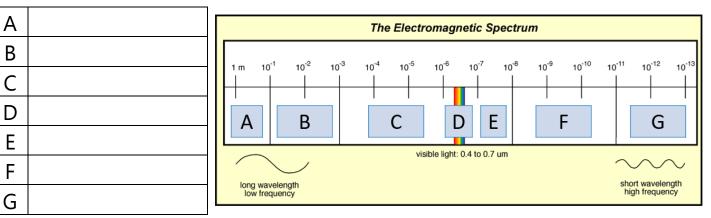
I can identify the angle of incidence and angle of reflection for a reflected wave ray			
I can use the law of reflection to predict the way light bounces off of a plane mirror			
I can relate the index of refraction of a material to the speed of light as it travels through			
I can qualitatively describe how light bends when transitioning between boundaries			
I can predict the direction that light will bend at a medium transition			

3 – Snell's Law and Critical Angle

I can mathematically relate the angles of refraction to the indices of refraction for the materials			
I can describe the phenomenon of Total Internal Reflection			
I can calculate the critical angle of incidence so that the light cannot escape the medium			
I can identify applications of total internal reflection and describe their importance			

4 – Diffraction

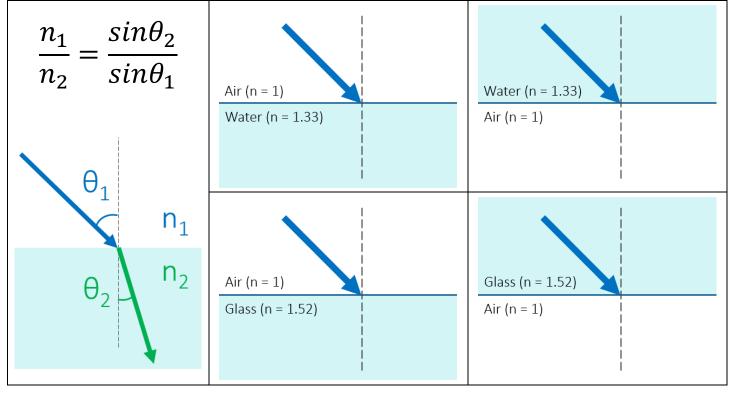
I can describe how light bends around a boundary			
I can describe the interference pattern formed by two coherent waves			
I can predict the resulting image from a double slit experiment			
I can calculate the spacing between bright spots for the double slit experiment			
I can conceptually relate band spacing with wavelength and gap distance			


5 – Polarization

I can describe the transformation that takes place when unpolarized light is polarized			
I can describe the interaction between two polarized filters at different orientations			
I can use Malus's Law to calculate the change in intensity when passing through polarized filters			

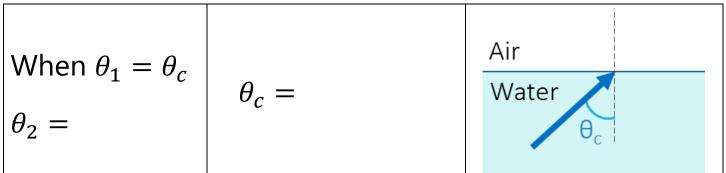
Waves - Light

Shelving Guide

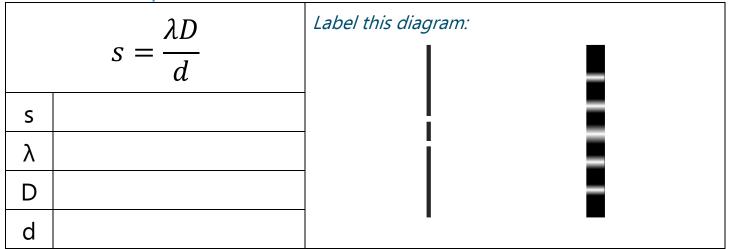

Electromagnetic Spectrum

Index of Refraction

Medium	Wave Speed (v)	Index of Refraction (n)	
Vacuum			$n_1 v_2$
Air	2.999 × 10 ⁸ m s⁻¹		$\frac{1}{2} = \frac{1}{12}$
Water	2.256 × 10 ⁸ m s ⁻¹		$n_2 v_1$
Glass	1.974 × 10 ⁸ m s⁻¹		


Refraction

Reflection


Critical Angle

Polarized Light

	$I = I_0 cos^2 \theta$	Unpolarized light Polarizer Analyzer $ \theta $
Ι		Polarized
I ₀		50% Loss light
θ		$I = I_0 \cos^2 \theta$

Double Slit Experiment

