Waves - Sound IB Physics Content Guide

Big Ideas

- Simple harmonic motion is a repeating relationship between an object's position, velocity, and acceleration
- Waves are formed and transferred by particles oscillating in a medium
- All waves have properties can be measured and mathematically related
- Instruments resonate at specific frequencies due to the number of standing waves that fit in the length of the system
- Waves can occupy the same space at the same space to create constructive or destructive interference

Content Objectives

1 – Simple Harmonic Motion

I can qualitatively describe the motion of an oscillating system		
I can relate the acceleration of an object in simple harmonic motion to its position		
I can graph the displacement, velocity, and acceleration vs time for simple harmonic motion		
I can interpret an SHM graph to describe the conditions at a specific point in an object's motion		
I can describe and relate the properties of period and frequency		
I can calculate period and frequency from a scenario		
I can qualitatively describe the energy changes that take place during an oscillation		

2 – Properties of Traveling Waves

I can describe how waves carry energy through a medium		
I can compare the properties of transverse and longitudinal waves		
I can read a wave's amplitude, wavelength, period, and frequency from a graph		
I can label a graph with the location of a wave's crest/compression and trough/rarefaction		
I can describe the number of complete wavelengths represented in a picture		
I can use the wave speed equation to mathematically relate speed, wavelength, and frequency		
I can relate pitch and frequency for sound waves		

3 - Sound

I can describe why sound travels at different speeds in different media		
I can calculate how far a distant object is by timing an echo		
I can describe the motion of a standing wave		
I can identify and label the node and antinodes on a standing wave diagram		

4 – Instruments

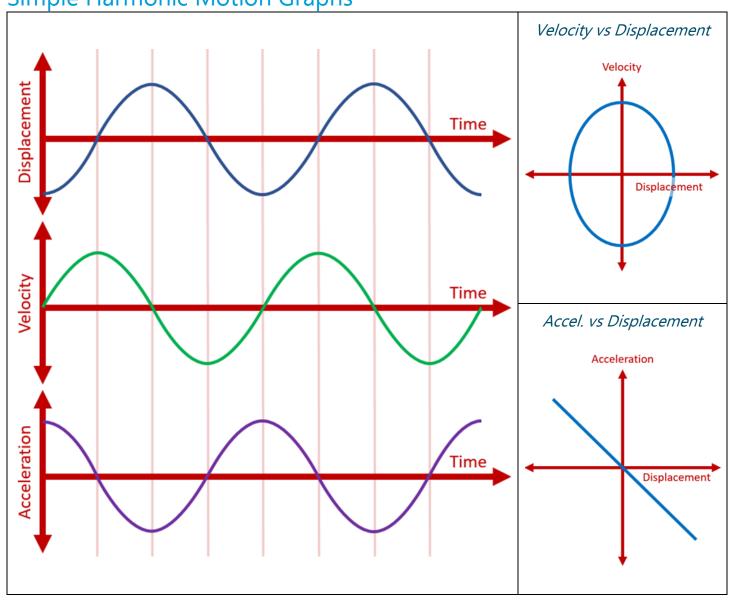
I can identify and label the node and antinodes on a standing wave diagram		
I can describe the end conditions and nodes/antinodes for open/closed pipes and vibrating strings		
I can calculate the wavelength or instrument length of a standing wave for different harmonics		

5 – Wave Interference

I can qualitatively and quantitatively interpret cases of constructive and destructive interference		
I can add up two waves with superposition to create a new waveform		
I can describe applications and real-world examples for wave interference		
I can use wavelength and source distance to identify maxima and minima for interference		

Waves - Sound

Shelving Guide

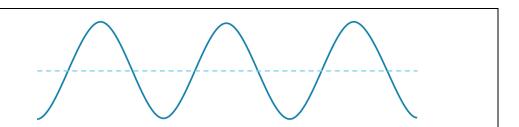

	Variable Symbol	Unit
Period	Т	S
Frequency	f	Hz
Wavelength	λ	m
Amplitude	Α	m
Wave Speed	V	m s ⁻¹

Data Booklet Equations:

$$T = \frac{1}{f}$$

$$c = f\lambda$$

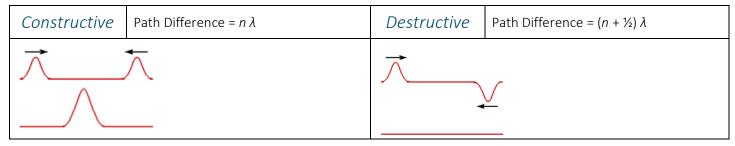
Simple Harmonic Motion Graphs



Types of Waves	Picture Definition		Examples	
Transverse	ransverse //////		LightRipples in a PondEarthquakes	
Longitudinal		Particles move parallel to the motion of the wave	SoundEarthquakes	

Parts of a Wave

Label the Wave:


- Amplitude
- Wavelength
- Crest
- Trough

Harmonics

	Open Pipe		Closed Pipe		String	
End Conditions	Antinode	Antinode	Node	Antinode	Node	Node
3 rd Harmonic	$L = \frac{3}{2}\lambda$		$L = \frac{5}{4}\lambda$			
3 Hammerine					L =	$\pm \frac{3}{2}\lambda$
2 nd Harmonic	$L = 1 \lambda$					
			L =	$=\frac{3}{4}\lambda$	L =	1 λ
1 st Harmonic						
(Fundamental)	L =	$\frac{1}{2}\lambda$	L =	$\frac{1}{4}\lambda$	L =	$\frac{1}{2}\lambda$

Interference

