Waves - Sound IB Physics Content Guide

Big Ideas

- Simple harmonic motion is a repeating relationship between an object's position, velocity, and acceleration
- Waves are formed and transferred by particles oscillating in a medium
- All waves have properties can be measured and mathematically related
- Instruments resonate at specific frequencies due to the number of standing waves that fit in the length of the system
- Waves can occupy the same space at the same space to create constructive or destructive interference

Content Objectives

1 – Simple Harmonic Motion

I can qualitatively describe the motion of an oscillating system	
I can relate the acceleration of an object in simple harmonic motion to its position	
I can graph the displacement, velocity, and acceleration vs time for simple harmonic motion	
I can interpret an SHM graph to describe the conditions at a specific point in an object's motion	
I can describe and relate the properties of period and frequency	
I can calculate period and frequency from a scenario	
I can qualitatively describe the energy changes that take place during an oscillation	

2 - Properties of Traveling Waves

I can describe how waves carry energy through a medium		
I can compare the properties of transverse and longitudinal waves		
I can read a wave's amplitude, wavelength, period, and frequency from a graph		
I can label a graph with the location of a wave's crest/compression and trough/rarefaction		
I can describe the number of complete wavelengths represented in a picture		
I can use the wave speed equation to mathematically relate speed, wavelength, and frequency		
I can relate pitch and frequency for sound waves		

3 – Sound

I can describe why sound travels at different speeds in different media		
I can calculate how far a distant object is by timing an echo		
I can describe the motion of a standing wave		
I can identify and label the node and antinodes on a standing wave diagram		

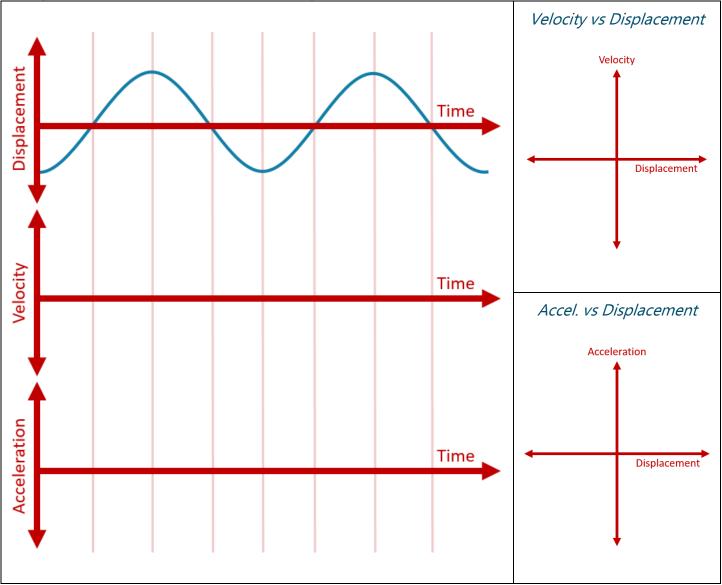
4 – Instruments

I can identify and label the node and antinodes on a standing wave diagram		
I can describe the end conditions and nodes/antinodes for open/closed pipes and vibrating strings		
I can calculate the wavelength or instrument length of a standing wave for different harmonics		

5 – Wave Interference

I can qualitatively and quantitatively interpret cases of constructive and destructive interference		
I can add up two waves with superposition to create a new waveform		
I can describe applications and real-world examples for wave interference		
I can use wavelength and source distance to identify maxima and minima for interference		

Waves - Sound


	Variable Symbol	Unit
Period		
Frequency		
Wavelength		
Amplitude		
Wave Speed		

Shelving Guide

Data Booklet Equations:

$$T = \frac{1}{f}$$
$$c = f\lambda$$

Simple Harmonic Motion Graphs

Types of Waves	Picture	Definition	Examples
Transverse			
Longitudinal			

Parts of a Wave

 Label the Wave: Amplitude Wavelength Crest 		
• Trough	\checkmark \lor	\mathbf{X}

Harmonics

	Open	Pipe	Close	d Pipe	Str	ing
End Conditions						
3 rd Harmonic					•	•
3 Harmonie	L = () × λ	L = () × λ	L = () × λ
2 nd Harmonic					•	•
	L = () × λ	L = () × λ	L = () × λ
1 st Harmonic					•	•
(Fundamental)	L = () × λ	L = () × λ	L = () × λ

Interference

Constructive	Path Difference =	Destructive	Path Difference =